de
                    array(2) {
  ["de"]=>
  array(13) {
    ["code"]=>
    string(2) "de"
    ["id"]=>
    string(1) "3"
    ["native_name"]=>
    string(7) "Deutsch"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    string(1) "1"
    ["default_locale"]=>
    string(5) "de_DE"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "de"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(7) "Deutsch"
    ["url"]=>
    string(129) "https://www.statworx.com/content-hub/blog/die-black-box-entschluesseln-3-explainable-ai-methoden-zur-vorbereitung-auf-den-ai-act/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/de.png"
    ["language_code"]=>
    string(2) "de"
  }
  ["en"]=>
  array(13) {
    ["code"]=>
    string(2) "en"
    ["id"]=>
    string(1) "1"
    ["native_name"]=>
    string(7) "English"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    int(0)
    ["default_locale"]=>
    string(5) "en_US"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "en"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(8) "Englisch"
    ["url"]=>
    string(120) "https://www.statworx.com/en/content-hub/blog/unlocking-the-black-box-3-explainable-ai-methods-to-prepare-for-the-ai-act/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/en.png"
    ["language_code"]=>
    string(2) "en"
  }
}
                    
Kontakt
Content Hub
Blog Post

Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act

  • Expert:innen Max Hilsdorf
  • Datum 17. Mai 2023
  • Thema Data ScienceHuman-centered AIStatistics & Methods
  • Format Blog
  • Kategorie Management
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act

Die versteckten Risiken von Black-Box Algorithmen

Unzählige Lebensläufe in kürzester Zeit sichten, bewerten und Empfehlungen für geeignete Kandidat:innen abgeben – das ist mit künstlicher Intelligenz im Bewerbungsmanagement mittlerweile möglich. Denn fortschrittliche KI-Techniken können auch komplexe Datenmengen effizient analysieren. Im Personalmanagement kann so nicht nur wertvolle Zeit bei der Vorauswahl eingespart, sondern auch Bewerber:innen schneller kontaktiert werden. Künstliche Intelligenz hat auch das Potenzial, Bewerbungsprozesse fairer und gerechter zu gestalten.

Die Praxis zeigt jedoch, dass auch künstliche Intelligenzen nicht immer „fairer“ sind. Vor einigen Jahren sorgte beispielsweise ein Recruiting-Algorithmus von Amazon für Aufsehen. Die KI diskriminierte Frauen bei der Auswahl von Kandidat:innen. Und auch bei Algorithmen zur Gesichtserkennung von People of Color kommt es immer wieder zu Diskriminierungsvorfällen.

Ein Grund dafür ist, dass komplexe KI-Algorithmen auf Basis der eingespeisten Daten selbstständig Vorhersagen und Ergebnisse berechnen. Wie genau sie zu einem bestimmten Ergebnis kommen, ist zunächst nicht nachvollziehbar. Daher werden sie auch als Black-Box Algorithmen bezeichnet. Im Fall von Amazon hat dieser auf Basis der aktuellen Belegschaft, die vorwiegend männlich war, geeignete Bewerber:innenprofile ermittelt und damit voreingenommene Entscheidungen getroffen. Auf diese oder ähnliche Weise können Algorithmen Stereotypen reproduzieren und Diskriminierung verstärken.

Prinzipien für vertrauenswürdige KI

Der Amazon-Vorfall zeigt, dass Transparenz bei der Entwicklung von KI-Lösungen von hoher Relevanz ist, um die ethisch einwandfreie Funktionsweise sicherzustellen. Deshalb ist Transparenz auch eines der insgesamt sieben statworx Principles für vertrauenswürdige KI. Die Mitarbeitenden von statworx haben gemeinsam folgende KI-Prinzipien definiert: Menschen-zentriert, transparent, ökologisch, respektvoll, fair, kollaborativ und inklusiv. Diese dienen als Orientierung für die alltägliche Arbeit mit künstlicher Intelligenz. Allgemeingültige Standards, Regeln und Gesetzte gibt es nämlich bisher nicht. Dies könnte sich jedoch bald ändern.

Die europäische Union (EU) diskutiert seit geraumer Zeit einen Gesetzesentwurf zur Regulierung von künstlicher Intelligenz. Dieser Entwurf, der so genannte AI-Act, hat das Potenzial zum Gamechanger für die globale KI-Branche zu werden. Denn nicht nur europäische Unternehmen werden von diesem Gesetzesentwurf anvisiert. Betroffen wären alle Unternehmen, die KI-Systeme auf dem europäischen Markt anbieten, dessen KI-generierter Output innerhalb der EU genutzt wird oder KI-Systeme zur internen Nutzung innerhalb der EU betreiben. Die Anforderungen, die ein KI-System dann erfüllen muss, hängen von dessen Anwendungsbereich ab.

Recruiting-Algorithmen werden auf Grund ihres Einsatzbereichs voraussichtlich als Hochrisiko-KI eingestuft. Demnach müssten Unternehmen bei der Entwicklung, der Veröffentlichung aber auch beim Betrieb der KI-Lösung umfassende Auflagen erfüllen. Unter anderem sind Unternehmen in der Pflicht, Qualitätsstandards für genutzte Daten einzuhalten, technische Dokumentationen zu erstellen und Risikomanagement zu etablieren. Bei Verstoß drohen hohe Bußgelder bis zu 6% des globalen jährlichen Umsatzes. Daher sollten sich Unternehmen schon jetzt mit den kommenden Anforderungen und ihren KI-Algorithmen auseinandersetzen. Ein sinnvoller erster Schritt können Explainable AI Methoden (XAI) sein. Mit Hilfe dieser können Black-Box-Algorithmen nachvollzogen und die Transparenz der KI-Lösung erhöht werden.

Die Black-Box mit Explainable AI Methoden entschlüsseln

Durch XAI-Methoden können Entwickler:innen die konkreten Entscheidungsprozesse von Algorithmen besser interpretieren. Das heißt, es wird transparent, wie ein Algorithmus Muster und Regeln gebildet hat und Entscheidungen trifft. Dadurch können mögliche Probleme wie beispielsweise Diskriminierung im Bewerbungsprozess nicht nur entdeckt, sondern auch korrigiert werden. Somit trägt XAI nicht nur zur stärkeren Transparenz von KI bei, sondern begünstigt auch deren ethisch unbedenklichen Einsatz und fördert so die Konformität einer KI mit dem kommenden AI-Act.

Einige XAI-Methoden sind sogar modellagnostisch, also anwendbar auf beliebige KI-Algorithmen vom Entscheidungsbaum bis hin zum Neuronalen Netz. Das Forschungsfeld rund um XAI ist in den letzten Jahren stark gewachsen, weshalb es mittlerweile eine große Methodenvielfalt gibt. Dabei zeigt unsere Erfahrung aber: Es gibt große Unterschiede zwischen verschiedenen Methoden hinsichtlich Verlässlichkeit und Aussagekraft ihrer Ergebnisse. Außerdem eignen sich nicht alle Methoden gleichermaßen zur robusten Anwendung in der Praxis und zur Gewinnung des Vertrauens externer Stakeholder. Daher haben wir unsere Top 3 Methoden anhand der folgenden Kriterien für diesen Blogbeitrag ermittelt:

  1. Ist die Methode modellagnostisch, funktioniert sie also für alle Arten von KI-Modellen?
  2. Liefert die Methode globale Ergebnisse, sagt also etwas über das Modell als Ganzes aus?
  3. Wie aussagekräftig sind die resultierenden Erklärungen?
  4. Wie gut ist das theoretische Fundament der Methode?
  5. Können böswillige Akteure die Resultate manipulieren oder sind sie vertrauenswürdig?

Unsere Top 3 XAI Methoden im Überblick

Anhand der oben genannten Kriterien haben wir drei verbreitete und bewährte Methoden zur detaillierten Darstellung ausgewählt: Permutation Feature Importance (PFI), SHAP Feature Importance und Accumulated Local Effects (ALE). Im Folgenden erklären wir für jede der drei Methoden den Anwendungszweck und deren grundlegende technische Funktionsweise. Außerdem gehen wir auf die Vor- und Nachteile beim Einsatz der drei Methoden ein und illustrieren die Anwendung anhand des Beispiels einer Recruiting-KI.

Mit Permutation Feature Importance effizient Einflussfaktoren identifizieren

Ziel der Permutation Feature Importance (PFI) ist es, herauszufinden, welche Variablen im Datensatz besonders entscheidend dafür sind, dass das Modell genaue Vorhersagen trifft. Im Falle des Recruiting-Beispiels kann die PFI-Analyse darüber aufklären, auf welche Informationen sich das Modell für seine Entscheidung besonders verlässt. Taucht hier z.B. das Geschlecht als einflussreicher Faktor auf, kann das die Entwickler:innen alarmieren. Aber auch in der Außenwirkung schafft die PFI-Analyse Transparenz und zeigt externen Anwender:innen an, welche Variablen für das Modell besonders relevant sind. Für die Berechnung der PFI benötigt man zunächst zwei Dinge:

  1. Eine Genauigkeitsmetrik wie z.B. die Fehlerrate (Anteil falscher Vorhersagen an allen Vorhersagen)
  2. Einen Testdatensatz, der zur Ermittlung der Genauigkeit verwendet werden kann.

Im Testdatensatz wird zunächst eine Variable nach der anderen durch das Hinzufügen von zufälligem Rauschen („Noise“) gewissermaßen verschleiert und dann die Genauigkeit des Modells über den bearbeiteten Testdatensatz bestimmt. Nun ist naheliegend, dass die Variablen, deren Verschleierung die Modellgenauigkeit am stärksten beeinträchtigen, besonders wichtig für die Genauigkeit des Modells sind. Sind alle Variablen nacheinander analysiert und sortiert, erhält man eine Visualisierung wie die in Abbildung 1. Anhand unseres künstlich erzeugten Beispieldatensatzes lässt sich folgendes erkennen: Berufserfahrung spielte keine große Rolle für das Modell, die Eindrücke aus dem Vorstellungsgespräch hingegen schon.


Abbildung 1 – Permutation Feature Importance am Beispiel einer Recruiting-KI (Daten künstlich erzeugt).

Eine große Stärke der PFI ist, dass sie einer nachvollziehbaren mathematischen Logik folgt. Die Korrektheit der gelieferten Erklärung kann durch statistische Überlegungen nachgewiesen werden. Darüber hinaus gibt es kaum manipulierbare Parameter im Algorithmus, mit der die Ergebnisse bewusst verzerrt werden könnten. Damit ist die PFI besonders geeignet dafür, das Vertrauen externer Betrachter:innen zu gewinnen. Nicht zuletzt ist die Berechnung der PFI im Vergleich zu anderen Explainable AI Methoden sehr ressourcenschonend.

Eine Schwäche der PFI ist, dass sie unter gewissen Umständen missverständliche Erklärungen liefern kann. Wird einer Variable ein geringer PFI-Wert zugewiesen, heißt das nicht immer, dass die Variable unwichtig für den Sachverhalt ist. Hat z.B. die Note des Bachelorstudiums einen geringen PFI-Wert, so kann das lediglich daran liegen, dass das Modell stattdessen auch die Note des Masterstudiums betrachten kann, da diese oft ähnlich sind. Solche korrelierten Variablen können die Interpretation der Ergebnisse erschweren. Nichtsdestotrotz ist die PFI eine effiziente und nützliche Methode zur Schaffung von Transparenz in Black-Box Modellen.

Stärken Schwächen
Wenig Spielraum für Manipulation der Ergebnisse Berücksichtigt keine Interaktionen zwischen Variablen
Effiziente Berechnung

Mit SHAP Feature Importance komplexe Zusammenhänge aufdecken

Die SHAP Feature Importance ist eine Methode zur Erklärung von Black-Box-Modellen, die auf der Spieltheorie basiert. Ziel ist es, den Beitrag jeder Variable zur Vorhersage des Modells zu quantifizieren. Damit ähnelt sie der Permutation Feature Importance auf den ersten Blick stark. Im Gegensatz zur PFI liefert die SHAP Feature Importance aber Ergebnisse, die komplexe Zusammenhänge zwischen mehreren Variablen berücksichtigen können.

SHAP liegt ein Konzept aus der Spieltheorie zugrunde: die Shapley Values. Diese sind ein Fairness-Kriterium, das jeder Variable eine Gewichtung zuweist, die ihrem Beitrag zum Ergebnis entspricht. Naheliegend ist die Analogie zu einem Teamsport, bei dem das Siegerpreisgeld unter allen Spieler:innen fair, also gemäß deren Beitrag zum Sieg, aufgeteilt wird. Mit SHAP kann analog für jede einzelne Beobachtung im Datensatz analysiert werden, welchen Beitrag welche Variable zur Vorhersage des Modells geliefert hat

Ermittelt man nun den durchschnittlichen absoluten Beitrag einer Variable über alle Beobachtungen im Datensatz hinweg, erhält man die SHAP Feature Importance. Abbildung 2 veranschaulicht beispielhaft die Ergebnisse dieser Analyse. Die Ähnlichkeit zur PFI ist klar ersichtlich, auch wenn die SHAP Feature Importance die Bewertung des Vorstellungsgespräches nur auf Platz 2 setzt.


Abbildung 2 – SHAP Feature Importance am Beispiel einer Recruiting KI (Daten künstlich erzeugt).

Ein großer Vorteil dieses Ansatzes ist die Möglichkeit, Interaktionen zwischen Variablen zu berücksichtigen. Durch die Simulation verschiedener Variablen-Kombinationen lässt sich zeigen, wie sich die Vorhersage ändert, wenn zwei oder mehr Variablen gemeinsam variieren. Zum Bespiel sollte die Abschlussnote eines Studiums stets im Zusammenhang mit dem Studiengang und der Hochschule betrachtet werden. Im Gegensatz zur PFI trägt die SHAP Feature Importance diesem Umstand Rechnung. Auch sind Shapley Values, einmal berechnet, die Grundlage einer Bandbreite weiterer nützlicher XAI Methoden.

Eine Schwäche der Methode ist jedoch, dass sie aufwendiger zu berechnen ist als die PFI. Nur für bestimmte Arten von KI-Algorithmen (z.B. Entscheidungsbäume) gibt es effiziente Implementierungen. Es will also gut überlegt sein, ob für ein gegebenes Problem eine PFI-Analyse genügt, oder ob die SHAP Feature Importance zu Rate gezogen werden sollte.

Stärken Schwächen
Wenig Spielraum für Manipulation der Ergebnisse Berechnung ist rechenaufwendig
Berücksichtigt komplexe Interaktionen zwischen Variablen

Mit Accumulated Local Effects einzelne Variablen in den Fokus nehmen

Die Accumulated Local Effects (ALE) Methode ist eine Weiterentwicklung der Partial Dependence Plots (PDP), die sich großer Beliebtheit unter Data Scientists erfreuen. Beide Methoden haben das Ziel, den Einfluss einer bestimmten Variablen auf die Vorhersage des Modells zu simulieren. Damit können Fragen beantwortet werden wie: „Steigen mit zunehmender Berufserfahrung die Chancen auf eine Management Position?“ oder „Macht es einen Unterschied, ob ich eine 1.9 oder eine 2.0 in meinem Abschlusszeugnis habe?“. Im Gegensatz zu den vorherigen zwei Methoden trifft ALE also eine Aussage über die Entscheidungsfindung des Modells, nicht über die Relevanz bestimmter Variablen.

Im einfachsten Fall, dem PDP, wird eine Stichprobe von Beobachtungen ausgewählt und anhand dieser simuliert, welchen Einfluss z.B. eine isolierte Erhöhung der Berufserfahrung auf die Modellvorhersage hätte. Isoliert meint, dass dabei keine der anderen Variablen verändert wird. Der Durchschnitt dieser einzelnen Effekte über die gesamte Stichprobe liefert eine anschauliche Visualisierung (Abbildung 3, oben). Leider sind die Ergebnisse des PDP nicht besonders aussagekräftig, wenn korrelierte Variablen vorliegen. Am Beispiel der Hochschulnoten lässt sich das besonders gut veranschaulichen. So simuliert der PDP hierbei alle möglichen Kombinationen von Noten im Bachelor- und Masterstudium. Dabei entstehen leider Fälle, die in der echten Welt selten vorkommen, z.B. ein ausgezeichnetes Bachelorzeugnis und ein miserabler Masterabschluss. Der PDP hat kein Gespür für unsinnige Fälle, woran auch die Ergebnisse kranken.

Die ALE-Analyse hingegen versucht, dieses Problem durch eine realistischere Simulation zu lösen, die die Zusammenhänge zwischen Variablen adäquat abbildet. Dabei wird die betrachtete Variable, z.B. die Bachelor-Note, in mehrere Abschnitte eingeteilt (z.B. 6.0-5.1, 5.0-4.1, 4.0-3.1, 3.0-2.1 und 2.0-1.0). Nun wird die Simulation der Erhöhung der Bachelor-Note lediglich für Personen in der respektiven Notengruppe durchgeführt. Dies führt dazu, dass unrealistische Kombinationen nicht in die Analyse einfließen. Ein Beispiel für einen ALE-Plot findet sich in Abbildung 3 (unten). Hier zeigt sich anschaulich, dass der ALE-Plot einen negativen Einfluss der Berufserfahrung auf die Anstellungschance identifiziert, während dies dem PDP verborgen bleibt. Ist dieses Verhalten der KI erwünscht? Will man zum Beispiel insbesondere junge Talente einstellen? Oder steckt dahinter vielleicht eine versteckte Altersdiskriminierung? In beiden Fällen hilft der ALE-Plot dabei, Transparenz zu schaffen und ungewünschtes Verhalten rechtzeitig zu erkennen.


Abbildung 3– Partial Dependence Plot und Accumulated Local Effects am Beispiel einer Recruiting KI (Daten künstlich erzeugt).

Zusammenfassend ist der ALE-Plot eine geeignete Methode, um einen Einblick in den Einfluss einer bestimmten Variable auf die Modellvorhersage zu gewinnen. Dies schafft Transparenz für Nutzende und hilft sogar dabei, ungewünschte Effekte und Bias zu identifizieren und zu beheben. Ein Nachteil der Methode ist, dass der ALE-Plot stets nur eine Variable analysiert. Um also den Einfluss aller Variablen zu verstehen, muss eine Vielzahl von ALE-Plots generiert werden, was weniger übersichtlich ist als z.B. ein PFI- oder ein SHAP Feature Importance Plot.

Stärken Schwächen
Berücksichtigt komplexe Interaktionen zwischen Variablen Mit ALE lassen sich nur eine oder zwei Variablen pro Visualisierung analysieren
Wenig Spielraum für Manipulation der Ergebnisse

Mit Explainable AI Methoden Vertrauen aufbauen

In diesem Beitrag haben wir drei Explainable AI Methoden vorgestellt, die dabei helfen können, Algorithmen transparenter und interpretierbarer zu machen. Dies begünstigt außerdem, den Anforderungen des kommenden AI-Acts frühzeitig gerecht zu werden. Denn auch wenn dieser noch nicht verabschiedet ist, empfehlen wir auf Basis des Gesetzesentwurfs sich bereits jetzt mit der Schaffung von Transparenz und Nachvollziehbarkeit für KI-Modelle zu beschäftigen. Viele Data Scientists haben wenig Erfahrung in diesem Feld und benötigen Fortbildung und Einarbeitungszeit, bevor sie einschlägige Algorithmen identifizieren und effektive Lösungen implementieren können. Die weiterführende Beschäftigung mit den vorgestellten Methoden empfehlen wir daher in jedem Fall.

Mit der Permutation Feature Importance (PFI) und der SHAP Feature Importance haben wir zwei Techniken aufgezeigt, um die Relevanz bestimmter Variablen für die Vorhersage des Modells zu bestimmen. Zusammenfassend lässt sich sagen, dass die SHAP Feature Importance eine leistungsstarke Methode zur Erklärung von Black-Box-Modellen ist, die die Interaktionen zwischen Variablen berücksichtigt. Die PFI hingegen ist einfacher zu implementieren, aber weniger leistungsfähig bei korrelierten Daten. Welche Methode im konkreten Fall am besten geeignet ist, hängt von den spezifischen Anforderungen ab.

Auch haben wir mit Accumulated Local Effects (ALE) eine Technik vorgestellt, die nicht die Relevanz von Variablen, sondern sogar deren genauen Einfluss auf die Vorhersage bestimmen und visualisieren kann. Besonders vielversprechend ist die Kombination einer der beiden Feature Importance Methoden mit ausgewählten ALE-Plots zu ausgewählten Variablen. So kann ein theoretisch fundierter und leicht interpretierbarer Überblick über das Modell vermittelt werden – egal, ob es sich um einen Entscheidungsbaum oder ein tiefes Neuronales Netz handelt.

Die Anwendung von Explainable AI ist somit eine lohnende Investition – nicht nur, um intern und extern Vertrauen in die eigenen KI-Lösungen aufzubauen. Vielmehr gehen wir davon aus, dass der geschickte Einsatz interpretationsfördernder Methoden drohende Bußgelder durch die Anforderungen des AI-Acts vermeidet, rechtlichen Konsequenzen vorbeugt, sowie Betroffene vor Schaden schützt – wie im Fall von unverständlicher Recruitingsoftware.

Unserer kostenfreier AI Act Quick Check unterstützt Sie gerne bei der Einschätzung, ob eines Ihrer KI-Systeme vom AI Act betroffen sein könnte: https://www.statworx.com/ai-act-tool/

Quellen & Informationen:

https://www.faz.net/aktuell/karriere-hochschule/buero-co/ki-im-bewerbungsprozess-und-raus-bist-du-17471117.html (letzter Aufruf 03.05.2023)
https://t3n.de/news/diskriminierung-deshalb-platzte-amazons-traum-vom-ki-gestuetzten-recruiting-1117076/ (letzter Aufruf 03.05.2023)
Weitere Informationen zum AI Act: https://www.statworx.com/content-hub/blog/wie-der-ai-act-die-ki-branche-veraendern-wird-alles-was-man-jetzt-darueber-wissen-muss/
Statworx principles: https://www.statworx.com/content-hub/blog/statworx-ai-principles-warum-wir-eigene-ki-prinzipien-entwickeln/
Christoph Molnar: Interpretable Machine Learning: https://christophm.github.io/interpretable-ml-book/ Max Hilsdorf, Julia Rettig

Bildnachweis:
AdobeStock 566672394 – by TheYaksha

Mehr erfahren!

Als eines der führenden Beratungs- und Entwicklungs­unternehmen für Data Science und KI begleiten wir Unternehmen in die datengetriebene Zukunft. Erfahre mehr über statworx und darüber, was uns antreibt.
Über uns