Zurück zu allen Blogbeiträgen

Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst

  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
02. Februar 2022
·

Team statworx

Nach dem neuesten Bericht des Weltklimarats (IPCC) im August 2021 „ist es eindeutig, dass menschlicher Einfluss die Atmosphäre, das Meer und das Land erwärmt hat“ [1]. Zudem schreitet der Klimawandel schneller voran als gedacht. Basierend auf den neuesten Berechnungen ist die globale Durchschnittstemperatur zwischen 2010 und 2019 im Vergleich zu dem Zeitraum zwischen 1850 und 1900 aufgrund des menschlichen Einflusses um 1.07°C gestiegen. Außerdem war die CO2 Konzentration in der Atmosphäre in dieser Zeit „höher als zu irgendeiner Zeit in mindestens 2 Millionen Jahren“ [1].

Dessen ungeachtet nehmen die globalen CO2 Emissionen weiter zu, auch wenn es 2020 einen kleinen Rückgang gab [2], der wahrscheinlich auf das Coronavirus und die damit zusammenhängenden ökonomischen Auswirkungen zurückzuführen ist. Im Jahr 2019 wurden weltweit insgesamt 36.7 Gigatonnen (Gt) CO2 ausgestoßen [2]. Eine Gt entspricht dabei einer Milliarden Tonnen. Um das 1.5 °C Ziel noch mit einer geschätzten Wahrscheinlichkeit von 80% zu erreichen, blieben Anfang 2020 nur noch 300 Gt übrig [1]. Da 2020 und 2021 bereits vorüber sind und unter Annahme von circa 35 Gt CO2 Emissionen für jedes Jahr, beträgt das verbleibende CO2 -Budget nur rund 230 Gt. Bleibt der jährliche Ausstoß konstant, wäre dieses in den nächsten sieben Jahren aufgebraucht.

Im Jahr 2019 verursachten China, die USA und Indien die größten CO2-Emissionen. Deutschland ist zwar nur für ungefähr 2% aller globalen CO2 Emissionen verantwortlich, liegt mit 0.7 Gt aber immer noch auf dem siebten Platz (siehe nachfolgende Grafik). Zusammen genommen sind die 10 Länder mit dem größten CO2-Ausstoß für circa zwei Drittel aller CO2-Emissionen weltweit verantwortlich [2]. Die meisten dieser Länder sind hoch industrialisiert, wodurch es sehr wahrscheinlich ist, dass sie künstliche Intelligenz (KI) in den nächsten Jahrzenten verstärkt nutzen werden, um Ihre eigene Wirtschaft zu stärken.

Mit KI den CO2-Ausstoß reduzieren

Was genau hat jetzt KI mit dem Ausstoß von CO2 zu tun? Die Antwort ist: Einiges! Prinzipiell ist die Anwendung von KI wie zwei Seiten derselben Medaille [3]. Auf der einen Seite hat KI großes Potenzial, CO2-Emissionen durch genauere Vorhersagen oder die Verbesserung von Prozessen in vielen Industrien zu reduzieren. Beispielsweise kann KI zur Vorhersage extremer Wetterereignisse, der Optimierung von Lieferketten oder der Überwachung von Mooren eingesetzt werden [4, 5].

Nach einer aktuellen Schätzung von Microsoft und PwC kann die Verwendung von KI im Umweltbereich den Ausstoß der weltweiten Treibhausgase um bis zu 4.4% im Jahr 2030 senken [6]. Absolut gesehen handelt es sich dabei um eine Reduzierung der weltweiten Treibhausgasemissionen von 0.9 bis 2.4 Gt CO2e. Dies entspricht dem, aufgrund aktueller Werte prognostizierten, Ausstoß von Australien, Kanada und Japan im Jahr 2030 zusammen [7]. Der Begriff Treibhausgase beinhaltet hier zusätzlich zu CO2 noch andere Gase wie Methan, die ebenfalls den Treibhauseffekt der Erde verstärken. Um all diese Gase einfach zu messen, werden sie oft als CO2-Äquivalente angeben und als CO2e abgekürzt.

Der CO2-Fußabdruck von KI

Obwohl KI großes Potenzial hat, CO2-Emissionen zu reduzieren, stößt die Anwendung von KI selbst CO2 aus. Dies ist die Kehrseite der Medaille. Im Vergleich zum Jahr 2012 ist die geschätzte Menge an Rechenaufwand für das Training von Deep Learning (DL) Modellen im Jahr 2018 um das 300.000-fache gestiegen (siehe nachfolgende Grafik, [8]). Die Erforschung, das Training und die Anwendung von KI-Modellen benötigen daher eine immer größere Menge an Strom, aber natürlich auch an Hardware. Beides setzt letztlich CO2-Emissionen frei und verstärkt somit den Klimawandel.

Anmerkung: Die Grafik wurde ursprünglich in [8] veröffentlicht.

Leider ist es mir nicht gelungen, eine Studie ausfindig zu machen, die den CO2-Fußabdruck von KI insgesamt schätzt. Allerdings gibt es diverse Studien, die den CO2– oder CO2e-Ausstoß von Natural Language Processing (NLP) Modellen schätzen. Diese sind in den vergangenen Jahren immer akkurater und somit populärer geworden [9]. Basierend auf der nachfolgenden Tabelle hat das abschließende Training von Googles BERT Modell ungefähr so viel CO2e freigesetzt, wie ein Passagier bei einer Flugreise von New York nach San Francisco. Das Training anderer Modelle, wie bspw. des Transformerbig-Modells, haben zwar wesentlich weniger CO2e-Emissionen verursacht, doch ist das abschließende Training von KI-Modellen nur der letzte Baustein beim Finden des besten Modells. Bevor ein Modell zum letzten Mal trainiert wird, sind häufig bereits viele verschiedene Modelle getestet worden, um so die besten Parameterwerte zu bestimmen. Diese neuronale Architektursuche hat beim Transformerbig-Modell entsprechend viele CO2e-Emissionen verursacht, insgesamt circa fünf Mal so viele wie ein durchschnittliches Auto in seiner gesamten Lebenszeit. Wirf jetzt mal einen Blick auf die CO2e-Emissionen des GPT-3 Modells und stell dir vor, wie hoch der CO2e-Ausstoß bei der dazugehörigen neuronalen Architektursuche gewesen sein muss.

Emissionen durch Menschen Emissionen durch KI
Beispiel CO2e Emissionen (Tonnen) Training von NLP Modellen CO2e Emissionen (Tonnen)
Ein Passagier bei Flugreise New York San Francisco 0.90 Transformerbig 0.09
Durchschnittlicher Mensch ein Jahr 5.00 BERTbase 0.65
Durchschnittlicher Amerikaner ein Jahr 16.40 GPT-3 84.74
Durchschnittliches Auto während Lebenszeit inkl. Benzin 57.15 Neuronale Architektursuche für Transformerbig 284.02

Anmerkung: Alle Werte sind aus [9] entnommen, außer der Werte für GPT-3 [17].

Was du als Data Scientist tun kannst, um deinen CO2-Fußabdruck zu verringern

Insgesamt gibt es ganz unterschiedliche Möglichkeiten, wie du als Data Scientist den CO2-Fußabdruck beim Training und Anwendung von KI-Modellen reduzieren kannst. Aktuell sind im KI-Bereich Machine Learning (ML) und Deep Learning (DL) am populärsten, deswegen findest du nachfolgend verschiedene Ansätze, um den CO2-Fußabdruck dieser Art KI-Modelle zu messen und zu reduzieren.

1. Sei dir der negativen Auswirkungen bewusst und berichte darüber

Es mag einfach klingen, aber sich der negativen Konsequenzen bewusst zu sein, die sich durch die Suche, das Training sowie die Anwendung von ML und DL Modellen ergeben, ist der erste Schritt, deinen CO2-Fußabdruck zu reduzieren. Zu verstehen, wie sich KI negativ auf die Umwelt auswirkt, ist entscheidend, um bereit zu sein, den zusätzlichen Aufwand bei der Messung und systematische Erfassung von CO2-Emissionen zu betreiben. Dies wiederum ist nötig, um den Klimawandel zu bekämpfen [8, 9, 10]. Solltest du also den ersten Teil über KI und die Klimakrise übersprungen haben, geh zurück und lies ihn. Es lohnt sich!

2. Miss den CO2-Ausstoß deines Codes

Um die CO2-Emissionen deiner ML und DL Modelle transparent darzulegen, müssen diese zuerst gemessen werden. Zurzeit gibt es leider noch kein standardisiertes Konzept, um alle Nachhaltigkeitsaspekte von KI zu messen. Eines wird allerdings gerade entwickelt [11]. Bis dieses fertiggestellt ist, kannst du bereits beginnen, den Energieverbrauch und die damit verbundenen CO2-Emissionen deiner KI-Modelle offen zu legen [12]. Mit TensorFlow und PyTorch sind die ausgereiftesten Pakete für die Berechnung von ML und DL Modellen wahrscheinlich in der Programmiersprache Python verfügbar. Obwohl Python nicht die effizienteste Programmiersprache ist [13], war es im September 2021 erneut die populärste im PYPL Index [14]. Dementsprechend gibt es sogar drei Python Pakete, die du nutzen kannst, um den CO2-Fußabdruck beim Training deiner Modelle zu messen:

  • CodeCarbon [15, 16]
  • CarbonTracker [17]
  • Experiment Impact Tracker [18]

Meiner Auffassung nach sind die beiden Pakete, CodeCarbon und CarbonTracker, am einfachsten anzuwenden. Außerdem lässt sich CodeCarbon problemlos mit TensorFlow und CarbonTracker mit PyTorch kombinieren. Aus diesen Gründen findest du für jedes der beiden Pakete nachfolgend ein Beispiel.

Um beide Pakete zu testen, habe ich den MNIST Datensatz verwendet und jeweils ein einfaches Multilayer Perceptron (MLP) mit zwei Hidden Layern und jeweils 256 Neuronen trainiert. Um sowohl eine CPU- als auch GPU-basierte Berechnung zu testen, habe ich das Modell mit TensorFlow und CodeCarbon auf meinem lokalen PC (15 Zoll MacBook Pro mit 6 Intel Core i7 CPUs aus dem Jahr 2018) und das mit PyTorch und CarbonTracker in einem Google Colab unter Verwendung einer Tesla K80 GPU trainiert. Beginnen wir mit den Ergebnissen für TensorFlow und CodeCarbon.

# benötigte Pakete importieren
import tensorflow as tf
from codecarbon import EmissionsTracker

# Modeltraining vorbereiten
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0


model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(256, activation=“relu“),
        tf.keras.layers.Dense(256, activation=“relu“),
        tf.keras.layers.Dense(10, activation=“softmax“),
    ]
)

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model.compile(optimizer=“adam“, loss=loss_fn, metrics=[„accuracy“])

# Modell trainieren und CO2 Emissionen berechnen
tracker = EmissionsTracker()
tracker.start()
model.fit(x_train, y_train, epochs=10)
emissions: float = tracker.stop()
print(emissions)

Nach der Ausführung des Codes erstellt CodeCarbon automatisch eine CSV-Datei, welche verschiedene Ergebnisparameter beinhaltet, wie Berechnungszeit in Sekunden, totaler Stromverbrauch durch die verwendete Hardware in kWh und die damit verbundenen CO2-Emissionen in kg. Das Training meines Modells dauerte insgesamt 112.15 Sekunden, verbrauchte 0.00068 kWh und verursachte 0.00047 kg CO2-Emissionen.

Als Grundlage für die Berechnungen mit PyTorch und CarbonTracker habe ich dieses Google Colab Notebook verwendet. Um auch hier ein Multilayer Perceptron zu berechnen und die dabei entstehenden CO2-Emissionen zu messen, habe ich einige Details des Notebooks geändert. Als erstes habe ich in Schritt 2 („Define Network“) das Convolutional Neural Network in ein Multilayer Perceptron geändert (Den Namen der Klasse „CNN“ habe ich beibehalten, damit der restliche Code im Notebook noch funktioniert.):

 class CNN(nn.Module):
  """Ein einfaches MLP Modell."""

  @nn.compact
  def __call__(self, x):
    x = x.reshape((x.shape[0], -1))  # flach machen
    x = nn.Dense(features=256)(x)
    x = nn.relu(x)
    x = nn.Dense(features=256)(x)
    x = nn.relu(x)
    x = nn.Dense(features=10)(x)
    x = nn.log_softmax(x)
    return x

Als zweites habe ich die Installation und den Import von CarbonTracker sowie die Messung der CO2-Emissionen in Schritt 14 („Train and evaluate“) eingefügt:

 !pip install carbontracker

from carbontracker.tracker import CarbonTracker

tracker = CarbonTracker(epochs=num_epochs)
for epoch in range(1, num_epochs + 1):
  tracker.epoch_start()

  # Vewendung des separaten PRNG keys, um Bilddaten zu permutieren
  rng, input_rng = jax.random.split(rng)
  # Optimierung für Trainings Batches
  state = train_epoch(state, train_ds, batch_size, epoch, input_rng)
  # Evaluation für Testdatensatz nach jeder Epoche 
  test_loss, test_accuracy = eval_model(state.params, test_ds)
  print(' test epoch: %d, loss: %.2f, accuracy: %.2f' % (
      epoch, test_loss, test_accuracy * 100))
  
  tracker.epoch_end()

tracker.stop()

Nachdem das leicht geänderte Google Colab Notebook bis zum eigentlichen Training des Modells ausgeführt wurde, gab CarbonTracker nach der ersten Trainingsepoche das nachfolgende Ergebnis aus:

 train epoch: 1, loss: 0.2999, accuracy: 91.25
 test epoch: 1, loss: 0.22, accuracy: 93.42
CarbonTracker:
Actual consumption for 1 epoch(s):
       Time:  0:00:15
       Energy: 0.000397 kWh
       CO2eq: 0.116738 g
       This is equivalent to:
       0.000970 km travelled by car
CarbonTracker:
Predicted consumption for 10 epoch(s):
       Time:  0:02:30
       Energy: 0.003968 kWh
       CO2eq: 1.167384 g
       This is equivalent to:
       0.009696 km travelled by car

Wie erwartet hat die GPU mehr Strom verbraucht und somit auch mehr CO2-Emissionen verursacht. Der Stromverbrauch war um das 6-fache und die CO2-Emissionen um das 2,5-fache Mal höher im Vergleich zu der lokalen Berechnung mit CPUs. Logischerweise hängt beides mit der längeren Berechnungszeit zusammen. Diese betrug zweieinhalb Minuten für die GPU und nur etwas weniger als zwei Minuten für die CPUs. Insgesamt geben beide Pakete alle notwendigen Informationen an, um die CO2-Emissionen und damit zusammenhängende Informationen zu beurteilen und zu berichten.

3. Vergleiche die verschiedenen Regionen von Cloud-Anbietern

In den vergangenen Jahren hat das Training und die Anwendung von ML sowie DL Modellen in der Cloud im Vergleich zu lokalen Berechnungen immer mehr an Bedeutung gewonnen. Sicherlich ist einer der Gründe dafür der zunehmende Bedarf an Rechenleistung [8]. Zugriff auf GPUs in der Cloud ist für viele Unternehmen günstiger und schneller als der Bau eines eigenen Rechenzentrums. Natürlich benötigen auch Rechenzentren von Cloud-Anbietern Hardware und Strom für deren Betrieb. Es wird geschätzt, dass bereits circa 1% des weltweiten Strombedarfs auf Rechenzentren zurückgeht [19]. Da die Nutzung von Hardware, unabhängig vom Standort, immer CO2-Emissionen verursachen kann, ist es auch beim Training und der Anwendung von ML und DL Modellen in der Cloud wichtig, die CO2-Emissionen zu messen.

Aktuell ermöglichen zwei verschiedene Plattformen, die CO2e-Emissionen von Berechnungen in der Cloud zu ermitteln [20, 21]. Die guten Neuigkeiten dabei sind, dass die drei großen Cloud-Anbieter – AWS, Azure und GCP – in beiden Plattformen implementiert sind. Um zu beurteilen, welcher der drei Cloud-Anbieter und welche der verfügbaren europäischen Regionen die geringsten CO2e-Emissionen verursachen, habe ich die erste Plattform – ML CO2 Impact [20] – verwendet, um die CO2e-Emissionen für das abschließende Training von GPT-3 zu berechnen. Das finale Training von GPT-3 benötigte 310 GPUs (NVIDIA Tesla V100 PCIe), die ununterbrochen für 90 Tagen liefen [17]. Als Grundlage für die Berechnungen der CO2e-Emissionen der verschiedenen Cloud-Anbieter und deren Regionen, habe ich die verfügbare Option “Tesla V100-PCIE-16GB” als GPU gewählt. Die Ergebnisse der Berechnungen befinden sich in der nachfolgenden Tabelle.

Vergleich verschiedener Cloud-Anbieter und Regionen in Europa

Google Cloud Computing AWS Cloud Computing Microsoft Azure
Region CO2e Emissionen (Tonnen) Region CO2e Emissionen (Tonnen) Region CO2e Emissionen (Tonnen)
europe-west1 54.2 EU - Frankfurt 122.5 France Central 20.1
europe-west2 124.5 EU - Ireland 124.5 France South 20.1
europe-west3 122.5 EU - London 124.5 North Europe 124.5
europe-west4 114.5 EU - Paris 20.1 West Europe 114.5
europe-west6 4.0 EU - Stockholm 10.0 UK West 124.5
europe-north1 42.2 N/A N/A UK South 124.5

Zwei Ergebnisse in der Tabelle sind besonders auffällig. Erstens, die ausgewählte Region hat selbst innerhalb eines Cloud-Anbieters einen extrem großen Einfluss auf die geschätzten CO2e-Emissionen. Den größten Unterschied gab es bei GCP, mit einem Faktor von mehr als 30. Dieser große Unterschied ergibt sich auch durch die Region „europe-west6“, welche mit vier Tonnen die insgesamt geringsten CO2e-Emissionen verursacht. Interessanterweise ist ein Faktor der Größe 30 weit mehr als die Faktoren von 5 bis 10, welche in Studien beschrieben werden [12]. Neben den Unterschieden zwischen Regionen sind zweitens die Werte einiger Regionen exakt identisch. Dies spricht dafür, dass eine gewisse Vereinfachung bei den Berechnungen vorgenommen wurde. Die absoluten Werte sollten daher mit Vorsicht betrachtet werden, wobei die Unterschiede weiterhin bestehen bleiben, da allen Regionen die gleiche (vereinfachte) Art der Berechnung zu Grunde liegt.


Neben den reinen CO2e-Emissionen durch Rechenzentren, ist es für die Wahl eines Cloud-Anbieters ebenfalls wichtig, die Nachhaltigkeitsstrategie der Anbieter zu berücksichtigen. In diesem Bereich scheinen GCP und Azure im Vergleich zu AWS die besseren Strategien zu haben [22, 23]. Auch wenn kein Cloud-Anbieter bisher 100% erneuerbare Energien nutzt (siehe Tabelle 2 in [9]), haben GCP und Azure dies mit dem Ausgleich ihres CO2-Ausstoßes sowie Energiezertifikaten bereits in der Theorie erreicht. Aus ökologischer Sicht bevorzuge ich letztlich GCP, weil mich deren Strategie am meisten überzeugt hat. Zudem hat GCP seit 2021 bei der Auswahl der Regionen einen Hinweis eingefügt, welche den geringsten CO2-Ausstoß verursachen [24]. Für mich zeigen solche kleinen Hilfestellungen, welchen Stellenwert das Thema dort einnimmt.

4. Trainiere und nutze KI-Modelle mit Bedacht

Zu guter Letzt gibt es noch viele weitere Tipps und Tricks in Bezug auf das Training und den Einsatz von ML sowie DL Modellen, die dir helfen, deinen CO2-Fußabdruck als Data Scientist zu minimieren.

  • Sei sparsam! Neue Forschung, die DL Modelle mit aktuellen Ergebnissen aus den Neurowissenschaften kombiniert, kann die Berechnungszeit um das bis zu 100-fache reduzieren und dadurch extrem viel CO2 einsparen [25].
  • Verwende, wenn möglich, einfachere KI-Modelle, die eine vergleichbare Vorhersagegenauigkeit haben, aber weniger rechenintensiv sind. Beispielsweise gibt es das Modell DistilBERT, welches eine kleinere und schnellere Version von BERT ist, aber eine vergleichbare Genauigkeit besitzt [26].
  • Ziehe Transfer Learning und sogenannte Foundation Modelle [10| in Betracht, um die Vorhersagegenauigkeit zu maximieren und Berechnungszeit zu minimieren.
  • Ziehe Federated Learning in Betracht, um CO2-Emissionen zu minimieren [27].
  • Denke nicht nur an die Vorhersagegenauigkeit deiner Modelle. Effizienz ist ebenfalls ein wichtiges Kriterium. Wäge ab, ob eine 1% höhere Genauigkeit die zusätzlichen Umweltauswirkungen wert sind [9, 12].
  • Wenn der beste Bereich für die Hyperparameter deines Modells noch unbekannt sind, nutze eine zufällige oder Bayesianische Suche nach den Hyperparametern anstatt einer Rastersuche [9, 20].
  • Wenn dein Modell während der Anwendung regelmäßig neu trainiert wird, wähle das Trainingsintervall bewusst aus. Je nach Anwendungsfall reicht es womöglich aus, das Modell nur jeden Monat und nicht jede Woche neu zu trainieren.

Fazit

Es besteht kein Zweifel daran, dass Menschen und ihre Treibhausgasemissionen das Klima beeinflussen und unseren Planeten erwärmen. KI kann und sollte beim Problem des Klimawandels zur Lösung beitragen. Gleichzeitig müssen wir den CO2-Fußabdruck von KI im Auge behalten, um sicherzustellen, dass es Teil der Lösung und nicht Teil des Problems ist.

Du kannst als Data Scientist dabei einen großen Beitrag leisten. Informiere dich über die positiven Möglichkeiten und die negativen Auswirkungen von KI und kläre andere darüber auf. Außerdem kannst du die CO2-Emissionen deiner Modelle messen und transparent darstellen. Du solltest zudem deine Anstrengungen zur Minimierung des CO2-Fußabdrucks deiner Modelle beschreiben. Letztlich kannst du deinen Cloud-Anbieter bewusst wählen und beispielsweise prüfen, ob es für deinen Anwendungsfall einfachere Modelle gibt, die eine vergleichbare Vorhersagegenauigkeit bieten, aber mit weniger Emissionen.

Referenzen

  1. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
  2. http://www.globalcarbonatlas.org/en/CO2-emissions
  3. https://doi.org/10.1007/s43681-021-00043-6
  4. https://arxiv.org/pdf/1906.05433.pdf
  5. Harnessing Artificial Intelligence
  6. https://www.pwc.co.uk/sustainability-climate-change/assets/pdf/how-ai-can-enable-a-sustainable-future.pdf
  7. https://climateactiontracker.org/
  8. https://arxiv.org/pdf/1907.10597.pdf
  9. https://arxiv.org/pdf/1906.02243.pdf
  10. https://arxiv.org/pdf/2108.07258.pdf
  11. https://algorithmwatch.org/de/sustain/
  12. https://arxiv.org/ftp/arxiv/papers/2104/2104.10350.pdf
  13. https://stefanos1316.github.io/my_curriculum_vitae/GKS17.pdf
  14. https://pypl.github.io/PYPL.html
  15. https://codecarbon.io/
  16. https://mlco2.github.io/codecarbon/index.html
  17. https://arxiv.org/pdf/2007.03051.pdf
  18. https://github.com/Breakend/experiment-impact-tracker
  19. https://www.iea.org/reports/data-centres-and-data-transmission-networks
  20. https://mlco2.github.io/impact/#co2eq
  21. http://www.green-algorithms.org/
  22. https://blog.container-solutions.com/the-green-cloud-how-climate-friendly-is-your-cloud-provider
  23. https://www.wired.com/story/amazon-google-microsoft-green-clouds-and-hyperscale-data-centers/
  24. https://cloud.google.com/blog/topics/sustainability/pick-the-google-cloud-region-with-the-lowest-co2)
  25. https://arxiv.org/abs/2112.13896
  26. https://arxiv.org/abs/1910.01108
  27. https://flower.dev/blog/2021-07-01-what-is-the-carbon-footprint-of-federated-learning
Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
10. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.