Zurück zu allen Blogbeiträgen

Real-time Computer Vision: Gesichter erkennen mit einem Roboter

  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
30. November 2022
·

Sarah Sester
Team AI Development

In der Computer Vision Arbeitsgruppe bei statworx hatten wir uns zum Ziel gesetzt, mit Hilfe von Projekten Computer Vision Kompetenzen aufzubauen. Für die diesjährige statworx Alumni Night, die Anfang September stattfand, entstand die Idee eines Begrüßungsroboters, der die ankommenden Mitarbeitenden und Alumni von statworx mit einer persönlichen Nachricht begrüßen sollte. Für die Realisierung des Projekts planten wir ein Gesichtserkennungsmodell auf einem Waveshare JetBot zu entwickeln. Der Jetbot wird von einem NVIDIA Jetson Nano angetrieben, ein kleiner, leistungsfähiger Computer mit einer 128-Core GPU für die schnelle Ausführung moderner KI-Algorithmen. Viele gängige KI-Frameworks wie Tensorflow, PyTorch, Caffe und Keras werden unterstützt. Das Projekt schien sowohl für erfahrene als auch für unerfahrene Mitglieder:innen der Arbeitsgruppe eine gute Möglichkeit zu sein, Wissen im Bereich Computer Vision aufzubauen und Erfahrungen im Bereich Robotik zu sammeln.

Gesichtserkennung (Face Recognition) mithilfe eines JetBots erfordert die Lösung einer Reihe miteinander verbundenen Problemen:

  1. Face Detection: Wo befindet sich das Gesicht auf dem Bild?
    Zunächst muss das Gesicht auf einem gezeigten Bild lokalisiert werden. Nur dieser Teil des Bildes ist relevant für alle folgenden Schritte.
  2. Face Embedding: Welche einzigartigen Merkmale hat das Gesicht?
    Anschließend müssen einzigartige Merkmale des Gesichts erkannt und in einem Embedding kodiert werden, anhand derer es von anderen Personen unterschieden werden kann. Eine damit einhergehende Herausforderung ist, dass das Modell lernen muss mit der Neigung des Gesichts oder schlechter Beleuchtung umzugehen. Daher muss vor der Erstellung des Embeddings die Pose des Gesichts ermittelt und so korrigiert werden, dass das Gesicht zentriert ist.
  3. Namensermittlung: Welches Embedding ähnelt dem erkannten Gesicht am meisten?
    Das Embedding des Gesichts muss schließlich mit den Embeddings aller Personen, die das Modell bereits kennt, verglichen werden, um den Namen der Person zu bestimmen.
  4. UI mit Willkommensnachricht
    Für die Ausgabe der Willkommensnachricht wird eine UI benötigt. Dafür muss zuvor ein Mapping erstellt werden, welches den Namen der zu grüßenden Person der jeweiligen Willkommensnachricht zuordnet.
  5. Konfiguration des JetBots
    Im letzten Schritt muss der JetBot konfiguriert und das Modell auf den JetBot übertragen werden.

Das Trainieren eines solchen Gesichterkennungsmodells ist sehr rechenintensiv, da Millionen von Bildern von Tausenden verschiedenen Personen verwendet werden müssen, um ein leistungsfähiges Neuronales Netz zu erhalten. Sobald das Modell jedoch trainiert ist, kann es Embeddings für jedes beliebige (bekannte oder unbekannte) Gesicht erzeugen. Daher konnten wir glücklicherweise auf bestehende Gesichterkennungsmodelle zurückgreifen und mussten lediglich die Embeddings von den Gesichtern unserer Kolleg:innen und Alumni erstellen. Nichtsdestotrotz sollen die Schritte des Trainings kurz erläutert werden, um ein Verständnis dafür zu vermitteln, wie solche Gesichtserkennungsmodelle funktionieren.

Für die Implementierung verwendeten wir das Pythonpaket face_recognition, welche die Gesichtserkennungsfunktionalität von dlib umschließt und so die Arbeit mit ihr erleichtert. Das neuronale Netz selbst wurde auf einem Datensatz von etwa 3 Millionen Bildern trainiert und erreichte auf dem Datensatz “Labeled Faces in the Wild” (LFW) eine Genauigkeit von 99,38 % und ist damit anderen Modellen überlegen.

Vom Bild zum codierten Gesicht (Face Detection)

Die Lokalisierung eines Gesichts auf einem Bild erfolgt durch den Histogram of Oriented Gradients (HOG) Algorithmus. Dabei wird jeder einzelne Pixel des Bildes mit den Pixeln in der unmittelbaren Umgebung verglichen und durch einen Pfeil ersetzt, der in die Richtung zeigt, in die das Bild dunkler wird. Diese Pfeile stellen die Gradienten dar und zeigen den Verlauf von hell nach dunkel über das gesamte Bild. Um eine übersichtlichere Struktur zu schaffen, werden die Pfeile auf einer höheren Ebene aggregiert. Das Bild (a) wird in kleine Quadrate von je 16×16 Pixeln unterteilt und mit der Pfeilrichtung ersetzt, die am häufigsten vorkommt (b). Anhand der HOG-kodierten Version des Bildes kann nun der Teil des Bildes gefunden werden, der einer HOG-Kodierung eines Gesichts (c) am ähnlichsten ist. Nur dieser Teil des Bildes ist relevant für alle folgenden Schritte.

Abbildung 1: Quelle HOG face pattern: https://commons.wikimedia.org/wiki/File:Dlib_Learned-HOG-Detector.jpg

Mit Embeddings Gesichter lernbar machen

Damit das Gesichtserkennungsmodell unterschiedliche Bilder einer Person trotz Neigung des Gesichts oder schlechter Beleuchtung der gleichen Person zuordnen kann, muss die Pose des Gesichts ermittelt und so projeziert werden, dass sich die Augen und Lippen immer an der gleichen Stelle im Bild befinden. Dabei kommt der Algorithmus Face Landmark Estimation zum Einsatz, welcher mithilfe eines Machine Learning Modells spezifische Orientierungspunkte im Gesicht finden kann. Dadurch können wir Augen und Mund lokalisieren und durch grundlegende Bildtransformationen wie Drehen und Skalieren so anpassen, dass beides möglichst zentriert ist.

Abbildung 2: Face landmarks (links) und Projektion des Gesichts (rechts)

Im nächsten Schritt wird mithilfe eines neuronalen Netzes ein Embedding des zentrierten Gesichtsbilds erstellt. Das neuronale Netz erlernt sinnvolle Embeddings, indem es innerhalb eines Trainingsschrittes drei Gesichtsbilder gleichzeitig betrachtet: Zwei Bilder einer bekannten Person und ein Bild einer anderen Person. Das neuronale Netz erstellt die Embeddings der drei Bilder und optimiert seine Gewichte, sodass die Embeddings der Bilder der gleichen Person angenähert werden, und sich stärker mit dem Embedding der anderen Person unterscheidet. Nachdem dieser Schritt millionenfach für unterschiedliche Bilder von verschiedenen Personen wiederholt wurde, lernt das neuronale Netz repräsentative Embeddings zu erzeugen. Die Netzwerkarchitektur des Gesichtserkennungsmodells von dlib basiert auf dem ResNet-34 aus dem Paper Deep Residual Learning for Image Recognition von He et al., mit weniger Layern und einer um die Hälfte reduzierten Anzahl von Filtern. Die erzeugten Embeddings sind 128-dimensional.

Abgleich mit gelernten Embeddings in Echtzeit

Für unseren Begrüßungsroboter konnten wir glücklicherweise auf das bestehende Modell von dlib zurückgreifen. Damit das Modell die Gesichter der aktuellen und ehemaligen statcrew erkennen kann, mussten nur noch die Embeddings erstellt werden. Dafür haben wir die offiziellen statworx Bilder verwendet und das resultierende Embedding zusammen mit dem Namen der Person abgespeichert. Wird danach ein unbekanntes Bild in das Modell gegeben, erkennt dieses Gesicht, zentriert es und erstellt dafür ein Embedding. Das erstellte Embedding wird anschließend mit den abgespeicherten Embeddings der bekannten Personen verglichen und bei großer Ähnlichkeit wird der Name dieser Person ausgegeben. Ist kein ähnliches Embedding vorhanden, gibt es keine Übereinstimmung mit den gespeicherten Personen. Mehr Bilder einer Person und damit mehrere Embeddings pro Person verbessern die Performanz des Modells. Unsere Tests zeigten jedoch, dass unsere Gesichter auch mit nur einem Bild pro Person recht zuverlässig erkannt wurden. Nach diesem Schritt hatten wir nun ein gutes Modell, welches in Echtzeit Gesichter in der Kamera erkannte und den zugehörigen Namen anzeigte.

Eine herzliche Begrüßung über ein UI

Unser Plan war es den Roboter mit einem kleinen Bildschirm oder einem Lautsprecher auszustatten, auf dem die Begrüßungsnachricht dann zu sehen bzw. zu hören sein sollte. Für den Anfang hatten wir uns dann aber dazu entschieden, den Roboter an einen Monitor anzuschließen und eine UI für den Monitor zu bauen. Deshalb entwickelten wir zunächst lokal eine simple UI. Dafür ließen wir die Begrüßungsnachricht auf einem Hintergrund mit den statworx Firmenwerten anzeigen und projizierten das Kamerabild in die untere rechte Ecke. Damit jede Person eine personalisierte Nachricht erhält, mussten wir eine json-Datei anlegen, welche das Mapping von den Namen zur Willkommensnachricht definiert. Für unbekannte Gesichter hatten wir die Willkommensnachricht „Welcome Stranger!“ angelegt. Aufgrund der vielen Namensvettern bei statworx hatten alle mit dem Namen Alex zusätzlich einen einzigartigen Identifikator erhalten:

Letzte Hürden vor der Inbetriebnahme des Roboters

Da das Modell und die UI bisher nur lokal liefen, blieb nun noch die Aufgabe das Modell auf den Roboter mit integrierter Kamera zu übertragen. Wie wir dann leider feststellen mussten, war dies komplizierter als gedacht. Wir hatten immer wieder mit Arbeitsspeicherproblemen zu kämpfen und mussten den Roboter insgesamt dreimal neu konfigurieren, bis wir erfolgreich das Modell auf dem Roboter zum Laufen bringen konnten. Die Anleitung für die Konfigurieren des Roboters, welche bei uns zum Erfolg geführt hat, befindet sich hier: https://jetbot.org/master/software_setup/sd_card.html. Die Arbeitsspeicherprobleme konnten sich meist mit einem Reboot beheben.

Der Einsatz des Begrüßungsroboters bei der Alumni Night

Unser Begrüßungsroboter war ein voller Erfolg bei der Alumni Night! Die Gäste waren sehr überrascht und freuten sich über die personalisierte Nachricht.

Abbildung 3: Der JetBot im Einsatz bei der statworx-Alumni-Night

Auch für uns als Computer Vision Cluster war das Projekt ein voller Erfolg. Während des Projekts lernten wir viel über Gesichtserkennungsmodelle und allen damit verbundenen Herausforderungen. Die Arbeit mit dem JetBot war besonders spannend und wir planen bereits fürs nächste Jahr weitere Projekte mit dem Roboter.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
10. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.