Zurück zu allen Blogbeiträgen

Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen

  • Artificial Intelligence
  • Data Science
  • Strategy
16. März 2023
·

Team statworx

Eine Datenkultur ist ein Schlüsselfaktor für die effektive Datennutzung

Mit der zunehmenden Digitalisierung ist die Fähigkeit, Daten effektiv zu nutzen, zu einem entscheidenden Erfolgsfaktor für Unternehmen geworden. Diese Denk- und Handlungsweise wird oft als Datenkultur bezeichnet und spielt eine entscheidende Rolle bei der Umwandlung eines Unternehmens in eine datengesteuerte Organisation. Durch die Förderung einer Datenkultur können Unternehmen von der Flexibilität einer faktenbasierten Entscheidungsfindung profitieren und das Potenzial ihrer Daten voll ausschöpfen. Eine solche Kultur ermöglicht schnellere und nachweislich bessere Entscheidungen und verankert datengetriebene Innovation im Unternehmen.

Obwohl Notwendigkeit und Nutzen einer Datenkultur offensichtlich erscheinen, scheitern dennoch viele Unternehmen an der Herausforderung eine solche Kultur zu etablieren. Einer Studie von New Vantage Partners zur Folge, konnten bisher nur 20% der Unternehmen erfolgreich eine Datenkultur entwickeln. Weiter bezeichnen über 90% der befragten Unternehmen die Veränderung der Kultur als größte Hürde bei der Transformation zum datengetriebenen Unternehmen.

Eine Datenkultur verändert die Arbeitsweise fundamental

Die Ursachen für diese Herausforderung sind vielfältig und die erforderlichen Veränderungen durchdringen nahezu alle Aspekte des Arbeitsalltages. In einer effektiven Datenkultur nutzt jede:r Mitarbeiter:in bevorzugt Daten und Datenanalysen zur Entscheidungsfindung und räumt Daten und Fakten Priorität gegenüber dem individuellen „Bauchgefühl“ ein. Diese Denkweise fördert die stetige Suche nach Möglichkeiten der Datennutzung, um so Wettbewerbsvorteile zu identifizieren, neue Einnahmequellen zu erschließen, Prozesse zu optimieren und bessere Vorhersagen zu treffen. Indem sie sich eine Datenkultur zu eigen machen, können Unternehmen das volle Potenzial ihrer Daten ausschöpfen und Innovationen im gesamten Unternehmen vorantreiben. Das bedingt, dass Daten als wichtige Triebkraft für Entscheidungsfindung und Innovation erkannt werden. Dieses Idealbild stellt neue Anforderungen an das individuelle Verhalten der Mitarbeitenden. Darüber hinaus erfordert dies auch eine gezielte Unterstützung dieses Verhaltens durch geeignete Rahmenbedingungen wie eine technische Infrastruktur und organisatorische Abläufe.

Drei Faktoren prägen die Datenkultur maßgeblich

Um eine Datenkultur nachhaltig im Unternehmen zu verankern, sind vor allem drei Faktoren entscheidend:

  1. Können | Fähigkeiten
  2. Wollen | Einstellung
  3. Machen | Verhalten

statworx nutzt diese drei Faktoren, um einerseits das abstrakte Konzept der Datenkultur greifbar zu machen und andererseits, um gezielt notwendige Veränderungen anzustoßen.

Dabei ist es entscheidend, allen Faktoren gleichermaßen Aufmerksamkeit zu schenken und sie möglichst ganzheitlich zu beachten. Häufig beschränken sich Initiativen zur Kulturentwicklung auf den Aspekt der Einstellung und versuchen bestimmte Werte losgelöst von anderen Einflussfaktoren zu verankern. Diese Initiativen scheitern dann meist an der Realität der Unternehmen, die mit ihren Prozessen, gelebten Ritualen, Praktiken und Werten entgegenstehen und somit die Etablierung der Kultur (aktiv) verhindern.

Zur Übersicht haben wir drei Faktoren der Datenkultur in einem Framework festgehalten.

1. Können: Fähigkeiten bilden die Basis für effektive Datennutzung

Fähigkeiten und Fertigkeiten bilden die Grundlage für den effektiven Umgang mit Daten. Diese umfassen zum einen die methodischen und fachlichen Fähigkeiten der Mitarbeitenden und zum anderen die Fähigkeit der Organisation, Daten nutzbar zu machen.

Für die Nutzbarkeit der Daten ist dabei die Sicherstellung der Datenverfügbarkeit von besonderer Bedeutung. Der „FAIR“-Standard – Findable, Accessible, Interoperable, Reusable – gibt eine Richtung vor, welche Eigenschaften dabei wesentlich sind. Diese können zum Beispiel durch Technologien, Wissensmanagement und eine geeignete Governance unterstützt werden.

Auf Ebene der Fähigkeiten der Mitarbeitenden liegt der Schwerpunkt auf Data Literacy (=Datenkompetenz) – der Fähigkeit, Daten zu verstehen und effektiv zu nutzen, um fundierte Entscheidungen zu treffen. Dazu gehört ein grundlegendes Verständnis von Datentypen und Strukturen, wie auch Erhebungs- und Analysemethoden. Data Literacy beinhaltet auch die Fähigkeit, die richtigen Fragen zu stellen, Daten richtig zu interpretieren und Muster und Trends zu erkennen. Bauen Sie relevante Kompetenzen, zum Beispiel durch Upskilling, gezielte Personalplanung und Einstellung von Datenexperten auf.

2. Wollen: Eine Datenkultur kann nur in passendem Wertekontext gedeihen

Der zweite Faktor – Wollen – befasst sich mit den Einstellungen und Absichten der Mitarbeitenden und der Organisation als Ganzes gegenüber der Nutzung von Daten. Dafür müssen sowohl die Überzeugungen und Werte von Individuen als auch der Gemeinschaft im Unternehmen adressiert werden. Für die Datenkultur sind dabei vier Aspekte von zentraler Bedeutung:

  • Zusammenarbeit & Gemeinschaft statt Konkurrenz
  • Transparenz & Teilen statt Informationsverschleierung & Datenhortung
  • Pilotprojekte & Experimente statt theoretischer Einschätzung
  • Offenheit & Lernbereitschaft statt Kleinlichkeit & starrer Denkweise
  • Daten als zentrale Entscheidungsgrundlage statt individueller Meinung & Bauchgefühl

Fallbeispiel: Unternehmen ohne Datenkultur

Auf individueller Ebene ist ein:e Mitarbeiter:in davon überzeugt, dass man sich mit exklusivem Wissen und Daten einen Vorteil verschaffen kann. Die Person hat innerhalb der Organisation außerdem gelernt, dass sich so strategische Vorteile oder Möglichkeiten zur eigenen Positionierung ergeben, und wurde in der Vergangenheit von Vorgesetzten für solches Verhalten belohnt. Die Person ist also davon überzeugt, dass es absolut sinnvoll und vorteilhaft ist, Daten für sich oder innerhalb des eigenen Teams zu behalten und nicht mit anderen Abteilungen zu teilen. Das Konkurrenzdenken und die Tendenz zur Geheimhaltung sind als Wert fest verankert.

Generell schränkt ein Verhalten wie im Fallbeispiel beschrieben, die Transparenz im gesamten Unternehmen ein und bremst dadurch die Organisation aus. Wenn nicht alle dieselben Informationen haben, ist es schwierig, die bestmögliche Entscheidung für das gesamte Unternehmen zu treffen. Nur durch Offenheit und Kollaboration kann der wahre Wert der Daten im Unternehmen genutzt werden.  Ein datengetriebenes Unternehmen basiert auf einer Kultur der Zusammenarbeit, des Teilens und des Lernens. Wenn Menschen dazu ermutigt werden, ihre Ideen und Erkenntnisse auszutauschen, können bessere Entscheidungen getroffen werden.

Auch mögliche Absichtserklärungen, wie Leitbilder und Manifeste ohne greifbare Maßnahmen, werden an der Einstellung der Mitarbeitenden nur wenig ändern. Die große Herausforderung besteht darin, die Werte nachhaltig zu verankern und für alle Mitarbeitenden zur leitenden Handlungsprämisse zu machen, die im Unternehmensalltag aktiv gelebt wird. Gelingt dies, ist die Organisation auf dem besten Weg das erforderliche Data Mindset zu schaffen, um eine effektive und erfolgreiche Datenkultur zum Leben zu erwecken. Bei der Etablierung und Sichtbarmachung dieser Werte kann zum Beispiel unser Transformations-Framework helfen.

Wir empfehlen den Aufbau einer Datenkultur Schritt für Schritt zu beginnen, denn bereits kleine experimentelle Projekte schaffen Mehrwert, dienen als Positivbeispiel und schaffen Vertrauen. Die praktische Erprobung einer neuen Innovation, selbst nur in einem begrenzten Rahmen, bringt erfahrungsgemäß schneller und bessere Resultate als eine theoretische Einschätzung. Letztlich geht es darum, den Wert von Daten in den Vordergrund zu stellen.

3. Machen: Verhalten schafft den Rahmen und ist gleichzeitig sichtbares Resultat der Datenkultur

Die beiden zuvor genannten Faktoren zielen letztendlich darauf ab, dass Mitarbeitende und die Organisation als Gesamtkonstrukt ihr Verhalten anpassen. Nur aktiv gelebte Datenkultur kann erfolgreich sein. Das alltägliche Verhalten - das Machen – spielt demnach eine zentrale Rolle bei der Etablierung einer Datenkultur.

Das Verhalten der Organisation lässt sich vor allem in zwei Dimensionen betrachten und gleichzeitig durch Veränderungen prägen.

  1. Aktivitäten und Rituale
  2. Strukturelemente der Organisation

Aktivitäten und Rituale:

Aktivitäten und Rituale beziehen sich auf die alltägliche Zusammenarbeit zwischen den Mitarbeitenden einer Organisation. Sie äußern sich in allen Formen der Zusammenarbeit, von den Abläufen in Meetings, über den Umgang mit Feedback und Risiken bis hin zur jährlichen Weihnachtsfeier. Dabei ist entscheidend, welchen Mustern das Miteinander folgt und welches Verhalten belohnt bzw. bestraft wird.

Erfahrungsgemäß fällt die Transformation zu datengetriebenen Entscheidungen den Teams leichter, welche bereits mit agilen Methoden wie Scrum vertraut sind. Teams, welche wiederrum starken Hierarchien folgen und risikoavers agieren, bewältigen diese Herausforderung weniger leicht. Ein Grund dafür ist, dass agile Arbeitsweisen Zusammenarbeit verschiedener Rollen bekräftigen, und so das Fundament für ein produktives Arbeitsumfeld schaffen. In diesem Kontext ist die Rolle der Führung, insbesondere des Senior Leaderships, von entscheidender Bedeutung. Die Personen auf C-Level müssen zwingend von Beginn an das erwünschte Verhalten vorleben, Rituale und Aktivitäten einführen und gemeinsam als zentraler Treiber der Transformation agieren.

Strukturelemente der Organisation:

Während Aktivitäten und Rituale aus den Teams heraus entstehen und nicht immer vorgegeben werden, bildet die zweite Dimension eine stärkere Formalisierung ab. Sie bezieht sich auf die Strukturelemente einer Organisation. Diese bilden den formalen Rahmen für Entscheidungen und prägen dadurch auch das Verhalten, sowie die Entstehung und Verankerung von Werten und Einstellungen.

Dabei wird zwischen internen und externen Strukturelementen unterschieden. Interne Strukturelemente sind vor allem innerhalb der Organisation sichtbar - zum Beispiel Rollen, Prozesse, Hierarchieebenen, oder Gremien. Durch die Anpassungen und Umstrukturierung von Rollen können erforderliche Skills im Unternehmen abgebildet werden. Weiter können Belohnungen und Beförderungen für Mitarbeitende einen Anreiz schaffen das Verhalten selbst anzunehmen und an Kolleg:innen weiterzugeben. Auch die Aufteilung der Arbeitsumgebung ist ein Teil der internen Struktur. Da die Arbeitsweise in datengetriebenen Unternehmen auf enger Zusammenarbeit beruht und Personen mit verschieden Fähigkeiten braucht. Daher bietet es sich an einen Raum für offenen Austausch zu schaffen, der Kommunikation und Kollaboration zulässt.

Externe Strukturelemente spiegeln internes Verhalten nach außen. Demnach beeinflussen die internen Strukturelemente, die Wahrnehmung des Unternehmens von außen. Dies zeigt sich beispielsweise durch eine klare Kommunikation, den Aufbau der Webseite sowie durch Stellenausschreibungen und Marketingbotschaften.

Unternehmen sollten ihr äußeres Verhalten so gestalten, dass es mit den Werten der Organisation übereinstimmt und somit eigene Strukturen unterstützt. Auf diese Weise kann eine harmonische Abstimmung zwischen der internen und der externen Positionierung der Firma erreicht werden.

Erste, kleine Schritte können bereits große Veränderungen schaffen

Unsere Erfahrung hat gezeigt, dass die aufeinander abgestimmte Gestaltung von Können, Wollen und Machen in eine nachhaltige Datenkultur resultiert. Nun ist klar, dass eine Datenkultur nicht von heute auf morgen geschaffen werden kann, aber es auch nicht mehr ohne geht. Es hat sich bewährt diese Herausforderung in kleine Schritte zu unterteilen. Mit ersten Pilotprojekten, wie beispielsweise der Etablierung der Datenkultur in nur einem Team und Initiativen für besonders engagierte Mitarbeitende, die den Wandel vorantreiben wollen, wird Vertrauen in den Kulturwandel geschaffen. Positive Einzelerlebnisse dienen als hilfreicher Katalysator für den Wandel der gesamten Organisation.

Der Philosoph und Visionär R. Buckminster Fuller hat dazu gesagt „Man bewirkt niemals eine Veränderung, indem man das Bestehende bekämpft. Um etwas zu verändern, schafft man neue Dinge oder geht andere Wege, die das Alte überflüssig machen.“ Denn mit der Weiterentwicklung der Technologie müssen Unternehmen in der Lage sein, sich anzupassen, um das gesamte Potential auszuschöpfen. So können Entscheidungen schneller und genauer als je zuvor getroffen, Innovation vorangetrieben und Prozesse zunehmend optimiert werden. Die nachhaltige Etablierung einer Datenkultur wird Unternehmen einen Wettbewerbsvorteil auf dem Markt verschaffen. In der Zukunft wird die Datenkultur ein wesentlicher Bestandteil jeder erfolgreichen Geschäftsstrategie sein. Unternehmen, die dies nicht annehmen, bleiben zurück.

Jedoch ist die Nutzung von Daten für viele Unternehmen ein großes Problem. Oft stehen die Datenqualität und die Zusammenstellung der Daten im Weg. Auch wenn in vielen Unternehmen bereits Datenlösungen vorhanden sind, werden sie nicht optimal genutzt. So bleiben viele Informationen ungenutzt und können nicht in die Entscheidungsfindung einfließen.

Quellen

[1] https://hbr.org/2020/03/how-ceos-can-lead-a-data-driven-culture

Bild: AdobeStock 569760113

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
10. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.