Zurück zu allen Blogbeiträgen

KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln

  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
08. Februar 2024
·

Tarik Ashry
Team Marketing

Die Diskussion um den Einsatz von Künstlicher Intelligenz (KI) am Arbeitsplatz scheint unsere Gesellschaft zu spalten. Aktuell entfaltet sich ein Spannungsfeld: KI wird von den einen als bahnbrechender Fortschritt gefeiert und von anderen als Horrorszenario gefürchtet. Dazwischen scheint es wenig zu geben.

Unsere statworx-Arbeitsgruppe „AI & Society“ hat es sich zur Aufgabe gemacht, dem Diskurs auf den Grund zu gehen, um Antworten auf die drängenden Fragen unserer Gesellschaft zu finden. Dazu führten wir eine nicht-repräsentative Meinungsumfrage – teils online, teils in der Innenstadt von Frankfurt – mit 132 Teilnehmer:innen durch. Wir wollten unter anderem wissen: Was denken die Menschen außerhalb der KI-Bubble über Künstliche Intelligenz im Arbeitsalltag? Wo sehen sie die größten Potenziale und wovor fürchten sie sich? Unser Ziel: Statt nur Meinungen abzufragen, wollen wir die Ängste und Hoffnungen der Menschen verstehen, um daraus Lösungsansätze für einen sozialverträglichen KI-Einsatz ableiten zu können. Dazu untersuchten wir auch andere relevante Studien und Umfragen und die daraus abgeleieteten Empfehlungen.

Was Menschen über KI denken

Geht es um die Nutzung von KI am Arbeitsplatz herrscht eigentlich nur in der Kompetenz-Frage weitestgehend Einigkeit: Unternehmen und Personen, die KI in ihren Arbeitsalltag einsetzen, verschaffen sich Vorteile gegenüber anderen. Darüber hinaus zeigt sich ein undeutliches, teils widersprüchliches Bild auf dem weiten Feld von Studien, Darstellungen der öffentlichen Meinung, persönlicher Ansichten und Emotionen. Ein paar Auszüge daraus:

53 Prozent der von uns befragten Personen wünschen sich, mehr KI-Anwendungen in Studium und Beruf einzusetzen. Gleichzeitig sind sich 45 Prozent der Befragten nicht bewusst, bereits KI-gestützte Services wie Google Maps und Spotify im Alltag zu nutzen. Das zeigt: Es besteht weiter ein großer Aufklärungsbedarf darüber, was der Begriff „Künstliche Intelligenz“ tatsächlich beinhaltet – und was nicht.

Unsere Umfrage zeigt, dass Menschen in verschiedenen Branchen sorgenvoll in die Zukunft von und mit KI blicken. 55 Prozent sagen, dass sie eher besorgt, als begeistert von KI sind. Etwas mehr als die Hälfte der von uns befragten Personen gab sogar an, Angst vor der “allgemeinen Entwicklung” im Bereich KI zu haben. Auch gegenüber dem Institut für Demoskopie Allensbach gaben 40 Prozent an, dass generative KI sie beunruhige. Einer weiteren Studie zufolge finden sogar 58 Prozent der Deutschen KI „unsympathisch“. Das deutet darauf hin, dass ein großer Anteil der Bevölkerung diffuse Ängste und negative Assoziationen in Bezug auf KI hat.

Wenn es um den Einfluss von Künstlicher Intelligenz auf den eigenen Arbeitsalltag geht, vermutet ein Drittel der befragten Personen einen “eher starken” Einfluss. Knapp 60 Prozent wiederum denken, dass KI den eigenen Job “eher wenig” oder “gar nicht” beeinflussen wird. Weniger als ein Drittel erwartet, dass KI die eigene Arbeit interessanter machen wird und nur circa ein Viertel kann sich “mehr Raum für Kreativität” durch KI vorstellen. Diese Tendenzen werden von Ergebnissen einer Onlineumfrage des Marktforschungsinstituts Bilendi unter nichtakademischen Fachkräften mit Berufsausbildung unterstützt: Ein Viertel der Befragten gab an, dass vor allem Unternehmen vom KI-Einsatz profitieren. Beschäftigte würden keine tatsächliche Arbeitsentlastung erfahren, weil durch den technologischen Fortschritt bloß die Menge zu erledigender Aufgaben zunähme. Das zeigt: Die Auswirkungen von KI auf den eigenen Arbeitsalltag werden eher als negativ eingeschätzt. Doch nur ein Fünftel der von Bilendi Befragten glaubt auch, dass KI den eigenen Job irgendwann vollständig ersetzen werde. Auch 58 Prozent unserer Befragten glauben nicht, dass KI zu mehr Arbeitslosigkeit führt, im Gegensatz zu 33 Prozent in der KIRA-Studie, die sich Sorgen um Arbeitsplatzverluste machen.

Worauf wir uns tatsächlich einstellen müssen

Dass die von uns befragten Personen den Impact von Künstlicher Intelligenz vermutlich unterschätzen, zeigt sich in internationalen Vergleichsstudien. Eine Ipsos-Umfrage vom Sommer 2023 illustriert das in Deutschland vorherrschende geringe Bewusstsein für das Transformationspotenzial von KI folgendermaßen:

  • 35 Prozent der deutschen Befragten halten es für wahrscheinlich, dass KI ihren derzeitigen Arbeitsplatz in den nächsten 5 Jahren verändern wird (somit vorletzter Platz im Ländervergleich mit einem Durchschnitt von 57 Prozent).
  • Nur 19 Prozent der deutschen Befragten glauben, dass KI ihren derzeitigen Arbeitsplatz in den nächsten 5 Jahren ersetzen wird, im Vergleich zu einem Länderdurchschnitt von 36 Prozent.
  • Lediglich 23 Prozent der deutschen Befragten denken, dass der verstärkte Einsatz von künstlicher Intelligenz ihre Arbeit in den nächsten 3-5 Jahren verbessern wird, im Gegensatz zum Länderdurchschnitt von 37 Prozent.
  • Grundsätzlich vermuten 40 Prozent der Befragten eine Verschlechterung des deutschen Arbeitsmarktes durch die Nutzung von KI, während nur 20% eine Verbesserung erwarten.

Die Ergebnisse zeigen: Unternehmen, aber vor allem ihre Beschäftigten fühlen sich der neuen Herausforderung nicht gewachsen und machen sich kein realistisches Bild von den wirklich erwartbaren Veränderungen durch KI. Es fehlt an Bildungsangeboten und an individuellen Kompetenzen. Ihre diffusen Sorgen gepaart mit Unbedarftheit spitzen sich zu konkreten Herausforderungen für Arbeitgeber zu: Wie sollen Unternehmen mit unterschiedlichen Sichtweisen ihrer Mitarbeitenden auf KI umgehen? Wie (wenn überhaupt) geht man auf die ein, die sich ganz verweigern? Und wie mit jenen, die extrem enthusiastisch bis hin zu übereifrig sind? Wie befähigt man Menschen, souverän mit KI-basierten Tools umzugehen? Welche Abteilung und welche Mitarbeitenden benötigen überhaupt welche KI-Kompetenzen? Und wie bildet man diese individuell passend aus?

Fakt ist: Gerade die Veränderungen im Bereich generativer KI wirken sich massiv auf die Arbeitswelt aus. Einerseits wächst der Bedarf an Fachkräften, die Data-Kompetenz mit Branchenwissen vereinen, und es entstehen ganz neue Jobs wie der des “Prompt Engineers”, andererseits birgt KI-basierte (Teil-)Automatisierung in vielen Branchen die Gefahr großer Stellenstreichungen. Die Ankündigung der BILD-Zeitung, wegen ChatGPT Personal abzubauen, ist wahrscheinlich nur ein Vorbote. Manche Schätzungen gehen sogar davon aus, dass bis zu 80 Prozent der Arbeitsplätze in den kommenden Jahrzehnten automatisiert werden könnten. Die UN und andere Expert:innen halten das zwar für unrealistisch, doch es zeigt auch: Wir wissen nicht, wohin die Reise wirklich gehen wird. Das liegt auch daran, dass Branchen zu unterschiedlich, Berufsprofile mehrdimensional und Menschen (noch) nicht ohne Weiteres ersetzbar sind. Nur weil ein KI-System einen Arbeitsprozess automatisiert, kann es nicht gleich ein komplettes Jobprofil übernehmen. KI-Forscher:innen stimmen dem noch zu: In einer großangelegten Befragung von mehr als 2.700 Forscher:innen äußerten nur zehn Prozent die Erwartung, dass KI uns bis 2027 in allen Aufgaben überlegen sein könnte. Doch die Hälfte der Befragten glaubt auch, dass dieser technologische Durchbruch bis 2047 erreicht werden könnte. Klar ist nur: In Zukunft werden menschliche Arbeitskräfte überall mit KI zusammenarbeiten.

Nur mangelndes Wissen? Woher die Skepsis gegenüber KI kommt

KI läuft Gefahr zu einem gesellschaftlichen Spaltungsthema zu werden, wenn wir sie nicht sozialverträglich in unsere Arbeitswelt einbetten. Wie sorgen wir dafür, dass das gelingt? Die meisten Studien deuten in die gleiche Richtung: Bildung ist ein wichtiger Schlüssel, um Verständnis für die (rechtlich zulässigen) Fähigkeiten von KI zu schaffen, fundierte Entscheidungen über und mit KI zu treffen und Ängste vor der Technologie abzubauen. Das bestätigt auch unsere Umfrage: Obwohl sie KI bereits häufiger nutzen, haben Führungskräfte den Wunsch nach mehr Wissen; ebenso wie 53 Prozent der Befragten, die gerne mehr KI in ihrer beruflichen Umgebung einsetzen würden. Doch grundlegendes Wissen über die Technologie und ihren verantwortungsvollen Einsatz reicht nicht.

Viele Menschen wollen auch mehr über die Risiken von KI wissen und suchen nach Wegen, sich selbst zu befähigen. Die Aussagen aus dem qualitativen Teil unserer Studie unterstreichen das. Eine Person fordert zum Beispiel, dass der “Umgang mit KI [...] allen Altersgruppen verständlich gemacht werden [sollte, damit] keine Wissenskluft entsteht.” Risikobestimmung ist für viele ein kritischer Punkt, wie aus dem Zitat hervorgeht: “Menschen wollen am ehesten mehr zu Risiken von KI wissen – am wenigsten wollen sie wissen, wie KI funktioniert.” Ein hohes Risikobewusstsein attestiert auch die KIRA-Studie. Passend dazu fanden wir in Bezug auf KI-Anwendungen heraus, dass den Befragten hohe Sicherheit am wichtigsten ist. Am wenigsten wichtig ist ihnen schnelle Verfügbarkeit. Interessant ist allerdings: Führungskräfte schätzen “Hohe Sicherheit” etwas niedriger und “Schnelle Verfügbarkeit” etwas höher ein als Angestellte.

Neben den unmittelbaren Risiken durch KI (wie Diskriminierung) sorgen sich Menschen auch aus anderen Gründen, zum Beispiel weil sie Abhängigkeit und Kontrollverlust befürchten, sich überfordert fühlen oder Angst vor Missbrauch und Manipulation haben. Insbesondere die Angst vor möglicher Überwachung durch KI ist prominent: 62 Prozent unserer Befragten und 54 Prozent der Teilnehmer:innen der KIRA-Studie stimmen dem zu. Ähnlich verhält es sich beim Thema Desinformation, das 51 Prozent unserer Befragten und 56 Prozent der KIRA-Studienteilnehmer:innen als mit KI verbunden betrachten. Interessanterweise denken jedoch 59 Prozent unserer Befragten nicht, dass KI die Menschheit bedroht, während 58 Prozent der KIRA-Studienteilnehmer:innen deshalb besorgt sind.

Wer sind die KI-Skeptiker:innen?

Wen die vielen Zahlen und Studien etwas ratlos zurücklassen, der oder die ist nicht allein. Es zeichnet sich kein klares Bild ab. Noch weniger lässt sich ableiten, wie man im Einzelnen vorgehen sollte, um mit KI-Skeptiker:innen umzugehen. Die Diskrepanzen in den Antworten spiegeln die Vielschichtigkeit der Wahrnehmung von KI und ihrer Auswirkungen auf den Arbeitsmarkt wider. Die verschiedenen Perspektiven und Herausforderungen unterstreichen die Notwendigkeit eines umfassenden Dialogs und einer partizipativen Gestaltung der Zukunft im Zeitalter der Künstlichen Intelligenz. Doch mit wem müssen wir wie sprechen?

Eine in der MIT Sloan Management Review veröffentlichten Umfrage unter 140 Führungskräften identifiziert drei Idealtypen von KI-basiertem Entscheidern: Skeptiker, Interagierer und Delegierer. Skeptiker sind nicht bereit, ihre Autonomie im Entscheidungsprozess an KI abzugeben, während Delegierer gerne die Verantwortung der KI überlassen. Intergrierer gehen einen Mittelweg, der je nach Entscheidung eher in die eine oder eher in die andere Richtung tendieren kann. Die drei Typen der Entscheidungsfindung zeigen, dass die Qualität der KI-Empfehlung selbst nur die Hälfte der Gleichung ist bei der Bewertung KI-gestützter Entscheidungsfindung in Organisationen. Der menschliche Filter macht den Unterschied aus, sagen die Autoren Philip Meissner and Christoph Keding. Delegierer sind auch ohne KI eher diejenigen, die Verantwortung an andere übergeben.

Eine EY-Studie kommt zu dem Ergebnis, dass Tech-Skeptiker:innen älter sind und ein geringeres Einkommen haben. Sie sind relativ unzufrieden mit ihrem Leben und befürchten, dass es künftigen Generationen noch schlechter gehen wird. Nur wenige glauben, dass die jungen Menschen von heute ein besseres Leben haben werden als ihre Eltern. Tech-Skeptiker:innen sind besorgt um ihre finanzielle Sicherheit, misstrauen der Regierung und sind nicht von den Vorteilen der Technologie überzeugt. Sie nutzen die Technologie für grundlegende Aufgaben, glauben aber nicht, dass sie die Probleme der Gesellschaft lösen wird. Sie verfügen zwar über grundlegende digitale Fähigkeiten, aber nur wenige sehen einen Sinn darin, diese weiterzuentwickeln. Tech-Skeptiker:innen sind in der Regel gegen die gemeinsame Nutzung von Daten, selbst wenn es einen klaren Zweck gibt.

Daraus können wir auch ableiten: Skepsis ist ein zutiefst menschliches, oft charakterliches Merkmal, das nicht unbedingt für vernunftlogische Argumente zugänglich ist. Ein Eckpfeiler aller Bemühungen muss deshalb transparente, verständnisvolle Kommunikation auf Augenhöhe sein, die das ernst nimmt. Eine Forrester-Umfrage zum Thema KI im Personalwesen identifizierte vier Personengruppen, auf die Führungskräfte ihre Kommunikation abstimmen sollten:

  • KI-Skeptiker:innen: am häufigsten in der IT-Branche anzutreffen
  • KI-Befürworter:innen: am ehesten im Alter von 26 bis 35 Jahren und im Gesundheitssektor
  • KI-Indifferente: am ehesten im Alter von 36-45 Jahren
  • KI-Enthusiast:innen: am ehesten 18-25 Jahre alt und arbeiten im Vertrieb

Unabhängig davon, wie zutreffend diese Einteilung für die deutsche Gesellschaft ist, kann die Erstellung von Personas sinnvoll sein, um passende Botschaften zu entwickeln. Jede dieser Gruppen reagiert unterschiedlich auf verschiedene Arten der Kommunikation. So sagt etwa die Hälfte der KI-Befürworter:innen, dass Transparenz in Bezug auf die Frage, ob durch KI Arbeitsplätze im eigenen Unternehmen wegfallen werden oder nicht, ihre Bedenken und Ängste in Bezug auf KI im Personalwesen verringern würde. Nur 18 Prozent derjenigen, die der KI gleichgültig gegenüberstehen, sehen das genauso. Während mehr als die Hälfte der KI-Skeptiker:innen angaben, dass die Kommunikation darüber, wie das Unternehmen KI einsetzt, ihre Bedenken und Ängste lindern würde, sind nur 22 Prozent der KI-Befürworter:innen dieser Meinung. 45 Prozent der vorsichtigen Befürworter:innen und Skeptiker:innen gab an, dass sie das Unternehmen eher verlassen würden, wenn ihre Bedenken über den Einsatz von KI in der Personalabteilung nicht ausgeräumt würden.

Wie schaffen wir KI-Zuversicht?

Was können wir daraus für den Umgang mit KI-Skepsis lernen? Wir befinden uns immer noch an der Spitze des Eisbergs, wenn es um die Nutzung von KI geht. Während Unternehmen ihre KI-Infrastruktur weiter ausbauen, müssen sie auch sicherstellen, dass sich ihre Mitarbeitenden befähigt fühlen, KI in ihren jeweiligen Rollen zu nutzen. Mit anderen Worten: Die Unternehmensführung muss deutlich zeigen, dass sie ihre Mitarbeitenden als Partner:innen und nicht nur als Passagier:innen auf der KI-Reise sieht.

Unsere Einschätzung: Es bedarf der Entwicklung robusterer Richtlinien für verantwortungsvolle KI in Unternehmen und Teams, um Sorgen in Zuversicht umzuwandeln und dem ungewollten Abfluss von Betriebsgeheimnissen oder anderer schutzwürdiger Daten entgegenzuwirken. Dazu gehört maximale Transparenz über den (geplanten) Einsatz von KI. Die Realität ist, dass die meisten Mitarbeiter:innen nicht wirklich verstehen, wie KI funktioniert – viele Entscheidungsträger:innen aber glauben, dass sie es wissen. Upskilling hilft, diese Kluft zu überbrücken. Die gezielte Qualifizierung von Arbeitnehmer:innen fördert einen sicheren und produktiven Einsatz. Wenn Mitarbeiter:innen darüber hinaus auch verstehen – weil es ihnen nachvollziehbar gezeigt wird – wie die Technologie ihr Arbeitsleben verbessern kann, erhöht das ihre Bereitschaft, mitzuziehen. Denn der Großteil von ihnen hofft schon, dass KI ihnen den Zugang zu Informationen erleichtern und ihre Produktivität steigern wird. Und auch diejenigen, die skeptisch sind, sind rationalen Argumenten gegenüber meist aufgeschlossen. Entscheidend ist, wie man sie anspricht. Statt Verständnis und Bereitschaft vorauszusetzen, kann es sich lohnen, sie auf individueller Ebene abzuholen: “Wenn du eine große finanzielle Entscheidung treffen musst, hörst du dann einzig auf dein Bauchgefühl oder versuchst so viele Daten und Informationen wie möglich zu sammeln?” Es muss klar werden, dass es bei (fast allen typischen) KI-Systemen um Technologien geht, die Menschen dienen dazu sollen, bessere, evidenzbasierte Entscheidungen zu treffen – und nicht um irgendeine Roboterdystopie, in der der Mensch zum Mittel wird.

Dafür ist zielgruppengerechte interne Kommunikation wichtig. Unternehmen in denen vornehmlich Tech- und KI-Enthusiasten arbeiten, sind möglicherweise gut beraten, KI als neuen, revolutionären Trend an ihre Mitarbeiter:innen zu kommunizieren. Wenn diese Zielgruppe Wert darauf legt, dass ihr Arbeitgeber modern und hightech ist, sollte sich das auch in der Kommunikation widerspiegeln. Andere Unternehmen, in denen weniger Enthusiasmus und vielleicht stärker konservative, vorsichtige Denkweise herrschen, fahren wahrscheinlich besser damit, KI intern als kontinuierlich Weiterentwicklung und Verbesserung bestehender, bekannter Technologien zu kommunizieren. Möglicherweise sollten sie sogar ganz darauf verzichten, das Label KI zu nutzen und neue Systeme eher an vertraute Namen und Beschreibungen anlehnen. Welche kommunikativen Strategien in welchem Unternehmen (und in welchen Abteilungen) gut funktionieren, lässt sich pauschal nicht sagen. Die oben vorgestellten Personas und ihre Gründe für KI-Skepsis geben jedoch gute Hinweise darauf, wie man interne Stimmungen einfangen und darauf eine passende Kommunikationsstrategie ausrichten kann.

Über die Arbeitsgruppe AI & Society

Als Arbeitsgruppe mit Einblicken in den aktuellen Forschungsstand führen wir gemeinsam mit Expert:innen aus Wirtschaft, Gesellschaft und Forschung die Diskussion. Unsere Arbeitsgruppe ist nicht nur auf die Analyse beschränkt, sondern handelt auch aktiv. "KI Macht Schule" und der Girls Day sind nur einige Beispiele unserer Bemühungen, die Gesellschaft in den Dialog einzubeziehen und KI erlebbar zu machen. Die Entwicklung von Responsible-AI-Prinzipien und Workshops sind weitere Maßnahmen, um Innovation verantwortungsvoll voranzutreiben.

Alle Ergebnisse auf einen Blick

Quellen

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
10. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.