Zurück zu allen Blogbeiträgen

Data-Centric AI: Von Model-First zu Data-First KI-Prozessen

  • Data Engineering
  • Data Science
  • Machine Learning
13. Juli 2022
·

Team statworx

Bei all dem Hype um KI in den letzten Jahren darf man nicht außer Acht lassen, dass ein Großteil der Unternehmen bei der erfolgreichen Implementierung von KI-basierten Anwendungen noch hinterherhinken. Dies ist gerade in vielen Industrien, wie z.B. in produzierenden Gewerben, recht offensichtlich (McKinsey).

Eine von Accenture 2019 durchgeführte Studie zum Thema Implementierung von KI in Unternehmungen zeigt, dass über 80% aller Proof of Concepts (PoCs) es nicht in Produktion schaffen. Außerdem gaben nur 5% aller befragten Unternehmen an, eine unternehmensweite KI-Strategie implementiert zu haben.

Diese Erkenntnisse regen zum Nachdenken an: Was genau läuft schief und warum schafft künstliche Intelligenz anscheinend noch nicht die ganzheitliche Transition von erfolgreichen, akademischen Studien zu der realen Welt?

1. Was ist data-centric AI?

„Data-centric AI is the discipline of systematically engineering the data used to build an AI system.“
Zitat von Andrew Ng, data-centric AI Pionier

Der data-centric Ansatz fokussiert sich auf eine stärkere Daten-integrierenden KI (data-first) und weniger auf eine Konzentration auf Modelle (model-first), um die Schwierigkeiten von KI mit der „Realität“ zu bewältigen. Denn, die Trainingsdaten, die meist bei Unternehmen als Ausgangspunkt eines KI-Projekts stehen, haben relativ wenig gemeinsam mit den akribisch kurierten und weit verbreiteten Benchmark Datensets wie MNIST oder ImageNet.

Das Ziel dieses Artikels ist, data-centric im KI-Workflow und Projektkontext einzuordnen, Theorien sowie relevante Frameworks vorzustellen und aufzuzeigen, wie wir bei statworx eine data-first KI-Implementierung angehen.

2. Welche Gedankengänge stecken hinter data-centric?

Vereinfacht dargestellt bestehen KI-Systeme aus zwei entscheidenden Komponenten: Daten und Modell(-Code). Data-centric fokussiert sich mehr auf die Daten, model-centric auf das Modell – duh!

Bei einer stark model-centric lastigen KI werden Daten als ein extrinsischer, statischer Parameter behandelt. Der iterative Prozess eines Data Science Projekts startet praktisch erst nach dem Erhalt der Daten bei den Modell-spezifischen Schritten, wie Feature Engineering, aber vor allem exzessives Trainieren und Fine tunen verschiedener Modellarchitekturen. Dies macht meist das Gros der Zeit aus, das Data Scientists an einem Projekt aufwenden. Kleinere Daten-Aufbereitungsschritte werden meist nur einmalig, ad-hoc am Anfang eines Projekts angegangen.

Im Gegensatz dazu versucht data-centric (automatisierte) Datenprozesse als zentralen Teil jedes ML Projekts zu etablieren. Hierunter fallen alle Schritte die ausgehend von den Rohdaten nötig sind, um ein fertiges Trainingsset zu generieren. Durch diese Internalisierung soll eine methodische Überwachbarkeit für verbesserte Qualität sorgen.

Man kann dabei data-centric Überlegungen in drei übergeordnete Kategorien zusammenfassen. Diese beschreiben lose, welche Aufgabenbereiche bei einem data-centric Ansatz bedacht werden sollten. Im Folgenden wurde versucht, diese bekannte Buzzwords, die im Kontext von data-centric immer wieder auftauchen, thematisch einer Kategorie zuzuordnen.

2.1. Integration von SMEs in den Development Prozess als wichtiges Bindeglied zwischen Data- und Model-Knowledge.

Die Einbindung von Domain Knowledge ist ein integraler Bestandteil von data-centric. Dies hilft Projektteams besser zusammenwachsen zu lassen und so das Wissen der Expert:innen, auch Subject Matter Experts (SMEs) genannt, bestmöglich im KI-Prozess zu integrieren.

  • Data Profiling:
    Data Scientists sollten nicht als Alleinkämpfer:innen die Daten analysieren und nur ihre Befunde mit den SMEs teilen. Data Scientists können ihre statistischen und programmatischen Fähigkeiten gezielt einsetzen, um SMEs zu befähigen, die Daten eigenständig zu untersuchen und auszuwerten.
  • Human-in-the-loop Daten & Model Monitoring:
    Ähnlich wie beim Profiling soll hierbei durch das Bereitstellen eines Einstiegpunktes gewährleistet werden, das SMEs Zugang zu den relevanten Komponenten des KI-Systems erhalten. Von diesem zentralen Checkpoint können nicht nur Daten sondern auch Modell-relevante Metriken überwacht werden oder Beispiele visualisiert und gecheckt werden. Gleichzeit gewährt ein umfängliches Monitoring die Möglichkeit, nicht nur Fehler zu erkennen, sondern auch die Ursachen zu untersuchen und das möglichst ohne notwendige Programmierkenntnisse.

2.2. Datenqualitätsmanagement als agiler, automatisierter und iterativer Prozess über (Trainings-)Daten

Die Datenaufbereitung wird als Prozess verstanden, dessen kontinuierliche Verbesserung im Vordergrund eines Data Science Projekts stehen sollte. Das Modell, anders als bisher, sollte hingegen erstmal als (relativ) fixer Parameter behandelt werden.

  • Data Catalogue, Lineage & Validation:
    Die Dokumentation der Daten sollte ebenfalls keine extrinsische Aufgabe sein, die oft nur gegen Ende eines Projekts ad-hoc entsteht und bei jeder Änderung, z.B. eines Modellfeatures, wieder obsolet sein könnte. Änderungen sollen dynamisch reflektiert werden und so die Dokumentation automatisieren. Data Catalogue Frameworks bieten hier die Möglichkeit, Datensätze mit Meta-Informationen anzureichern.
    Data Lineage soll im Weiteren dabei unterstützen, bei diversen Inputdaten, verschiedenen Transformations- und Konsolidierungsschritten zwischen roh- und finalem Datenlayer den Überblick zu behalten. Je komplexer ein Datenmodell, desto eher kann ein Lineage Graph Auskunft über das Entstehen der finalen Spalten geben (Grafik unten), beispielsweise ob und wie Filterungen oder bestimmte join Logiken benutzt wurden. Die Validierung (neuer) Daten hilft schließlich eine konsistente Datengrundlage zu gewährleisten. Hier helfen die Kenntnisse aus dem Data Profiling um Validierungsregeln auszuarbeiten und im Prozess zu integrieren.
  • Data & Label Cleaning:
    Die Notwendigkeit der Datenaufbereitung ist selbsterklärend und als Best Practice ein fester Bestandteil in jedem KI-Projekt. Eine Label-Aufbereitung ist zwar nur bei Klassifikations-Algorithmen relevant, wird aber hier selten als wichtiger pre-processing Schritt mitbedacht. Aufbereitungen können aber mit Hilfe von Machine Learning automatisiert werden. Falsche Labels können es nämlich für Modelle erschweren, exakte patterns zu erlernen.Auch sollte man sich bewusst machen, dass solange sich die Trainingsdaten ändern, die Datenaufbereitung kein vollkommen abgeschlossener Prozess sein kann. Neue Daten bedeuten oft auch neue Cleaning-Schritte.
  • Data Drifts in Produktion:
    Eine weit verbreitete Schwachstelle von KI-Applikationen tritt meist dann auf, wenn sich Daten nicht so präsentieren, wie es beim Trainieren der Fall war, beispielweise im Zeitverlauf ändern (Data Drifts). Um die Güte von ML Modellen auch langfristig zu gewährleisten, müssen Daten in Produktion kontinuierlich überwacht werden. Hierdurch können Data Drifts frühzeitig ausfindig gemacht werden, um dann Modelle neu auszurichten, wenn z.B. bestimmte Inputvariablen von ihrer ursprünglichen Verteilung zu stark abweichen.
  • Data Versioning:
    GitHub ist seit Jahren der go to Standard für Code Versionierungen, um mehr Übersicht und Kontrolle zwischen Codeständen zu haben. Aber auch Daten können versioniert werden und so eine ganzheitliche Prozesskontrolle bieten. Ebenfalls können so Code- mit Datenständen verknüpft werden. Dies sorgt nicht nur für bessere Überwachbarkeit, sondern hilft auch dabei, automatisierte Prozesse anzustoßen.

2.3. Generieren von Trainingsdatensätzen als programmatischer Task.

Gerade das Erzeugen von (gelabelten) Trainingsdaten ist einer der größten Roadblocker für viele KI-Projekte. Gerade bei komplexen Problemen, die große Datensätze benötigen, ist der initiale, manuelle Aufwand enorm.

  • Data Augmentation:
    Bei vielen datenintensiven Deep Learning Modellen wird diese Technik schon seit längerem eingesetzt, um mit bestehenden Daten, artifizielle Daten zu erzeugen. Bei Bilddaten ist dies recht anschaulich erklärbar. Hier werden beispielsweise durch Drehen eines Bildes verschiedene Perspektiven desselben Objektes erzeugt. Aber auch bei NLP und bei „tabularen“ Daten (Excel und Co.) gibt es Möglichkeiten neue Datenpunkte zu erzeugen.
  • Automated Data Labeling:
    Normalerweise ist Labeling ein sehr arbeitsintensiver Schritt, in dem Menschen Datenpunkte einer vordefinierten Kategorie zuordnen. Einerseits ist dadurch der initiale Aufwand (Kosten) sehr hoch, andererseits fehleranfällig und schwierig zu überwachen. Hier kann ML durch Konzepte wie semi- oder weak supervison Automatisierungshilfe leisten, was den manuellen Aufwand erheblich reduziert.
  • Data Selection:
    Arbeiten mit großen Datensätzen sind im lokalen Trainingskontext schwierig zu handhaben. Gerade dann, wenn diese nicht mehr in den Arbeitsspeicher des Laptops passen. Und selbst wenn, dann dauern Trainingsläufe meist sehr lange. Data Selection versucht die Größe durch ein aktives Subsampling (ob gelabelt oder ungelabelt) zu reduzieren. Aktiv werden hier die „besten“ Beispiele mit der höchsten Vielfalt und Repräsentativität ausgewählt, um die bestmögliche Charakterisierung des Inputs zu gewährleisten – und das automatisiert.

Selbstverständlich ist es nicht in jedem KI-Projekt sinnvoll, alle aufgeführten Frameworks zu bedenken. Es ist Aufgabe eines jedes Development Teams, die nötigen Tools und Schritte im data-centric Kontext zu analysieren und auf Relevanz und Übertragbarkeit zu prüfen. Hier spielen neben datenseitigen Überlegungen auch Business Faktoren eine Hauptrolle, da neue Tools meist auch mehr Projektkomplexität bedeuten.

3. Integration von data-centric bei statworx

Data-centric Überlegungen spielen bei unseren Projekten gerade in der Übergangsphase zwischen PoC und Produktivstellen des Modells vermehrt eine führende Rolle. Denn auch in einigen unserer Projekte ist es schon vorgekommen, dass man nach erfolgreichem PoC mit verschiedenen datenspezifischen Problemen zu kämpfen hatte; meist hervorgerufen durch unzureichende Dokumentation und Validierung der Inputdaten oder ungenügende Integration von SMEs im Datenprozess und Profiling.

Generell versuchen wir daher unseren Kunden die Wichtigkeit des Datenmanagements für die Langlebigkeit und Robustheit von KI-Produkten in Produktion aufzuzeigen und wie hilfreiche Komponenten innerhalb einer KI-Pipeline verknüpft sind.

Gerade unser Data Onboarding – ein Mix aus Profiling, Catalogue, Lineage und Validation, integriert in ein Orchestrations-Framework – ermöglicht uns mit den oben genannten Problemen besser umzugehen und so hochwertigere KI-Produkte bei unseren Kunden zu integrieren.

Zusätzlich hilft dieses Framework dem ganzen Unternehmen, bisher ungenutzte, undokumentierte Datenquellen für verschiedene Use Cases (nicht nur KI) verfügbar zu machen. Dabei ist die enge Zusammenarbeit mit den SMEs auf Kundenseite essenziell, um so effektive und robuste Datenqualitäts-Checks zu implementieren. Die resultierenden Datentöpfe und -prozesse sind somit gut verstanden, sodass Validierungs-Errors vom Kunden verstanden und behoben werden können, was so zu einem langlebigen Einsatz des Service beiträgt.

In einer abgespeckten, kundenspezifischen Data Onboarding Integration haben wir mit Hilfe verschiedener Open und Closed Source Tools eine für den Kunden einfach skalierbare und leicht verständliche Plattform geschaffen.

So haben wir beispielsweise Validationchecks mit Great Expectations (GE), einem Open Source Framework, umgesetzt. Dieses Tool bietet neben Python-basierter Integration diverser Tests auch eine Reporting Oberfläche, die nach jedem Durchlauf einen einfach verständlichen Einstiegspunkt in die Resultate bietet.

Diese Architektur kann dann in verschiedenen Kontexten laufen, ob in der Cloud, mit einem Closed Source Software wie Azure Data Factory oder on premises mit Open Source Tools wie Airflow – und kann um weitere Tools jederzeit ergänzt werden.

4. Data-centric im Status Quo von KI

Sowohl model- als auch data-centric beschreiben Handlungsansätze, wie man an ein KI-Projekt herangehen kann.

Model-centric ist in den letzten Jahren recht erwachsen geworden und es haben sich dadurch einige Best Practices in verschiedenen Bereichen entwickelt, auf denen viele Frameworks aufbauen.

Dies hat auch damit zu tun, dass in der akademischen Welt der Fokus sehr stark auf Modellarchitekturen und deren Weiterentwicklung lag (und noch liegt) und diese stark mit führenden KI-Unternehmen korreliert. Gerade im Bereich Computer Vision und Natural Langue Processing konnten kommerzialisierte Meta-Modelle, trainiert auf gigantischen Datensets, die Tür zu erfolgreichen KI Use Cases öffnen. Diese riesigen Modelle können auf kleineren Datenmengen für Endanwendungen gefinetuned werden, bekannt unter Transfer Learning.

Diese Entwicklung hilft allerdings nur einem Teil der gescheiterten Projekte, da gerade im Kontext von industriellen Projekten fehlende Kompatibilität oder Starrheit der Use Cases die Anwendungen von Meta-Modellen erschwert. Die Nicht-Starrheit findet sich häufig in maschinenlastigen Produktionsindustrien, wo sich das Umfeld, in dem Daten produziert werden, stetig ändert und sogar der Austausch einer einzelnen Maschine große Auswirkungen auf ein produktives KI-Modell haben kann. Wenn diese Problematik nicht richtig im KI-Prozess bedacht wurde, entsteht hier ein schwer kalkulierbares Risiko, auch bekannt unter Technical Debt [Quelle: https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf].

Zu guter Letzt stellen die Distributionen bei einigen Use Cases ein inhärentes Problem für ML dar. Modelle haben grundsätzlich Schwierigkeiten mit edge cases, sehr seltene und ungewöhnliche Beobachtungspunkte (die long tails [Quelle: https://medium.com/codex/machine-learning-the-long-tail-paradox-1cc647d4ba4b] einer Verteilung). Beispielweise ist es nicht ungewöhnlich, dass bei Fault Detection das Verhältnis von fehlerhaften zu einwandfreien Bauteilen eins zu mehreren Tausend beträgt. Die Abstraktionsfähigkeit bei ungesehenen, abseits der Norm liegenden Fehlern ist hier meist schlecht.

5. Schluss – Paradigmenwechsel in Sicht?

Diese Probleme zu bewältigen, ist zwar Teil des Versprechens von data-centric, aber präsentiert sich im Moment noch eher unausgereift.

Das lässt sich auch an der Verfügbarkeit und Maturität von Open Source Frameworks darlegen. Zwar gibt es schon vereinzelte, produktionsfertige Anwendungen, aber keine, die die verschiedenen Teilbereiche von data-centric zu vereinheitlichen versucht. Dies führt unweigerlich zu längeren, aufwendigeren und komplexeren KI-Projekten, was für viele Unternehmen eine erhebliche Hürde darstellt. Außerdem sind kaum Datenmetriken vorhanden, die Unternehmen ein Feedback geben, was sie denn genau gerade „verbessern“. Und zweitens, viele der Tools (bsp. Data Catalogue) haben einen eher indirekten, verteilten Nutzen.

Einige Start-ups, die diese Probleme angehen wollen, sind in den letzten Jahren entstanden. Dadurch, dass diese aber (ausschließlich) paid tier Software vermarkten, ist es eher undurchsichtig, inwiefern diese Produkte wirklich die breite Masse an Problemen von verschiedenen Use Cases abdecken können.

Obwohl die Aufführungen oben zeigen, dass Unternehmen generell noch weit entfernt sind von einer ganzheitlichen Integration von data-centric, wurden robuste Daten Strategien in der letzten Zeit immer wichtiger (wie wir bei statworx an unseren Projekten sehen konnten).

Mit vermehrtem akademischem Research in Daten Produkte wird sich dieser Trend sicherlich noch verstärken. Nicht nur weil dadurch neue, robustere Frameworks entstehen, sondern auch weil durch Uni-Absolvent:innen den Unternehmen mehr Wissen in diesem Gebiet zufließt.

Bild-Quellen:

Model-centric arch: eigene

Data-centric arch: eigene

Data lineage: https://www.researchgate.net/figure/Data-lineage-visualization-example-in-DW-environment-using-Sankey-diagram_fig7_329364764

Historisierung Code/Data: https://ardigen.com/7155/

Data Augmentation: https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-your-model-but-how-aa1913468722

Data & AI pipeline: eigeneValidieren mit GE: https://greatexpectations.io/blog/ge-data-warehouse/

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
  • Coding
  • Data Engineering
Automatisierte Erstellung von Docker Containern
Stephan Emmer
10. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.