Zurück zu allen Blogbeiträgen

Automatisierte Erstellung von Docker Containern

  • Coding
  • Data Engineering
10. Mai 2019
·

Stephan Emmer
Team AI Development

Im letzten Docker-Tutorial hat Olli gezeigt, wie man mit Rocker ein Docker-Image aus R-Base-Skripten erstellt und diese in einem Container ausführt. Darauf aufbauend werde ich erläutern, wie man diesen Prozess mit Hilfe eines Bash-/Shell-Skripts automatisieren kann. Da wir bei statworx in der Regel Container für das Deployment unserer Apps verwenden, habe ich eine kleine Test-App mit R-Shiny erstellt, die in einem Test-Container gespeichert wird. Selbstverständlich ist es auch möglich, jede andere Anwendung mit diesem automatisierten Skript zu speichern, wenn man möchte. Ich habe außerdem ein Repository auf unserem Blog-GitHub erstellt, in dem sich alle Dateien sowie die Test-App befinden.

Feel free, den Inhalt zu testen und zu verwenden. Wenn du daran interessiert bist, selbst eine Setup-Skriptdatei zu schreiben, sei angemerkt, dass es auch möglich ist, alternative Programmiersprachen wie Python zu verwenden.

Die Idee dahinter

$ docker-machine ls
NAME          ACTIVE   DRIVER       STATE     URL   SWARM   DOCKER    ERRORS
Dataiku       -        virtualbox   Stopped                 Unknown   
default       -        virtualbox   Stopped                 Unknown   
ShowCase      -        virtualbox   Stopped                 Unknown   
SQLworkshop   -        virtualbox   Stopped                 Unknown   
TestMachine   -        virtualbox   Stopped                 Unknown   

$ docker-machine start TestMachine
Starting "TestMachine"...
(TestMachine) Check network to re-create if needed...
(TestMachine) Waiting for an IP...
Machine "TestMachine" was started.
Waiting for SSH to be available...
Detecting the provisioner...
Started machines may have new IP addresses. You may need to re-run the `docker-machine env` command.

$ eval $(docker-machine env --no-proxy TestMachine)

$ docker ps -a
CONTAINER ID        IMAGE               COMMAND             CREATED             
cfa02575ca2c        testimage           "/sbin/my_init"     2 weeks ago         
STATUS                            PORTS                    NAMES
Exited (255) About a minute ago   0.0.0.0:2000->3838/tcp   testcontainer

$ docker start testcontainer
testcontainer

$ docker ps
...

Docker-Images immer wieder neu zu bauen, jedes Mal wenn man Änderungen an seiner Anwendung vornimmt, kann mit der Zeit etwas mühsam werden – besonders, wenn man ständig dieselben alten Befehle eintippt. Olli hat bereits den Vorteil beschrieben, ein Zwischen-Image für die zeitaufwendigsten Prozesse – wie etwa das Installieren von R-Paketen – zu erstellen, um den Prozess der Inhaltserstellung zu beschleunigen. Das ist eine hervorragende Praxis, die man bei jedem geeigneten Projekt anwenden sollte. Aber wie wäre es, wenn man auch die Containerisierung selbst beschleunigen könnte? Man braucht dazu nur ein kleines Helferlein – ein Tool, das, einmal geschrieben, die gesamte Arbeit für einen übernimmt.

Building and rebuilding Docker images over and over again every time you make some changes to your application can get a little tedious at times, especially if you type in the same old commands all the time. Olli discussed the advantage of creating an intermediary image for the most time-consuming processes, like installing R packages to speed things up during content creation. That's an excellent practice, and you should try and do this for every project viable. But how about speeding up the containerisation itself? A small helper tool is needed that, once it's written, does all the work for you.

Die Werkzeuge, die man benötigt

Um Docker-Images und -Container zu erstellen, muss Docker auf deinem Rechner installiert sein. Wenn du das in diesem Blogpost und auf unserem Blog-GitHub bereitgestellte Material testen oder verwenden möchtest, solltest du außerdem VirtualBox, R und RStudio installieren – sofern noch nicht geschehen. Wenn du Windows (10) als Betriebssystem nutzt, musst du zusätzlich das Windows Subsystem für Linux installieren. Alternativ kannst du deine eigenen Skriptdateien auch mit PowerShell oder einem ähnlichen Tool erstellen.

Das Tool selbst ist ein Bash-/Shell-Skript, das für dich Docker-Container baut und ausführt. Alles, was du tun musst, um es zu verwenden, ist, die ausführbare Datei docker_setup in dein Projektverzeichnis zu kopieren und sie auszuführen. Das Einzige, was das Tool danach von dir verlangt, ist eine Eingabe zur Benennung.

Falls die Ausführung aus irgendeinem Grund fehlschlägt oder Fehler erzeugt, versuche, das Tool über das Terminal auszuführen.

source ./docker_setup

Um selbst ein Bash-/Shell-Skript zu erstellen oder zu replizieren, öffne deinen bevorzugten Texteditor, erstelle eine neue Textdatei, füge ganz oben die Präambel #!/bin/bash ein und speichere sie ab. Öffne danach dein Terminal, navigiere zu dem Verzeichnis, in dem du dein Skript gespeichert hast, und ändere den Modus mit dem Befehl chmod +x dein_skriptname. Um zu testen, ob es korrekt funktioniert, kannst du z. B. die Zeile echo 'it works!' unter die Präambel schreiben.

#!/bin/bash
echo 'it works!'

Wenn du alle verfügbaren Modus-Optionen überprüfen möchtest, besuche das Wiki, und für eine vollständige Anleitung das „Linux Shell Scripting Tutorial“.

Der Code, der das Ganze ausführt

Wenn du die ausführbare Datei docker_setup mit deinem bevorzugten Texteditor öffnest, kann der Code anfangs etwas überwältigend oder verwirrend wirken – aber er ist ziemlich unkompliziert.

#!/bin/bash

# This is a setup bash for docker containers!
# activate via: chmod 0755 setup_bash or chmod +x setup_bash
# navigate to wd docker_contents
# excute in terminal via source ./setup_bash

echo ""
echo "Welcome, You are executing a setup script bash for docker containers."
echo ""

echo "Do you want to use the Default from the global configurations?"
echo ""
source global_conf.sh
echo "machine name = $machine_name"
echo "container = $container_name"
echo "image = $image_name"
echo "app name = $app_name"
echo "password = $password_name"
echo ""

docker-machine ls
echo ""
read -p "What is the name of your docker-machine [default]? " machine_name
echo ""
if [[ "$(docker-machine status $machine_name 2> /dev/null)" == "" ]]; then
    echo "creating machine..." 
        && docker-machine create $machine_name
else
    echo "machine already exists, starting machine..." 
        && docker-machine start $machine_name
fi
echo ""
echo "activating machine..."
eval $(docker-machine env --no-proxy $machine_name)
echo ""

docker ps -a
echo ""
read -p "What is the name of your docker container? " container_name
echo ""

docker image ls
echo ""
read -p "What is the name of your docker image? (lower case only!!) " image_name
echo ""

Die Hauptstruktur des Codes basiert auf verschachtelten if-Anweisungen. Im Gegensatz zu einer manuellen Docker-Einrichtung über das Terminal muss das Skript viele verschiedene Möglichkeiten berücksichtigen und sogar eine gewisse Fehlertoleranz zulassen. Die erste if-Anweisung zum Beispiel – wie im obigen Bild dargestellt – prüft, ob eine angeforderte Docker-Maschine bereits existiert. Falls die Maschine nicht existiert, wird sie erstellt. Existiert sie bereits, wird sie einfach gestartet und verwendet.

Die verwendeten Code-Elemente oder Befehle sind dabei noch direkter. Der Befehl echo gibt eine Information oder eine Leerzeile zur besseren Lesbarkeit aus. Der Befehl read ermöglicht es, eine Benutzereingabe auszulesen und als Variable zu speichern, die anschließend in allen weiteren Codeabschnitten verwendet wird. Die meisten anderen Code-Elemente sind Docker-Befehle und im Grunde identisch mit denen, die manuell über das Terminal eingegeben werden. Wenn du mehr über Docker-Befehle erfahren möchtest, wirf einen Blick in die Dokumentation und Ollis großartigen Blogbeitrag.

Das Git-Repository

Der zentrale Punkt des Git-Repositories auf unserem Blog-GitHub ist das automatisierte Docker-Setup, aber es enthält auch einige andere praktische Hilfsmittel und soll hoffentlich zu einer umfassenden Sammlung nützlicher Skripte und Bash-Dateien heranwachsen. Mir ist bewusst, dass es für alles im Repository möglicherweise bessere, schnellere und komfortablere Lösungen gibt, aber wenn wir es als Übung und Form des kreativen Austauschs betrachten, denke ich, dass wir einiges daraus gewinnen können.

Die ausführbare Datei docker_error_logs ermöglicht eine schnelle Fehlersuche und das Speichern von Logdateien, falls dein Programm oder deine App innerhalb deines Docker-Containers nicht funktioniert.

Die ausführbare Datei git_repair ist noch nicht vollständig getestet und sollte mit Vorsicht verwendet werden. Die Idee dahinter ist, schnell zu prüfen, ob dein lokales Projekt oder Repository mit einem entsprechenden GitHub-Repository verbunden ist – basierend auf einer URL – und gegebenenfalls diese Verbindung zu „reparieren“. Zudem kann sie Git-Pulls, Commits und Pushes für dich verwalten – aber auch hier bitte mit Bedacht nutzen.

Kommende Projekte

Wie bereits erwähnt, plane ich, die Sammlung und den Nutzen unseres Blog-GitHubs bald weiter auszubauen. Im nächsten Schritt werde ich dem Docker-Setup mehr Komfort hinzufügen, indem ich eine separate Datei einfüge, die die Möglichkeit bietet, Standardwerte für wiederholte Ausführungen zu speichern und zu verwenden. Also bleib dran und schau bald wieder auf unserem statworx Blog vorbei. Bis dahin – happy coding.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
This is some text inside of a div block.
This is some text inside of a div block.