Zurück zu allen Blogbeiträgen

Gut in Form - Der richtige Datentyp in R, Stata und SPSS

  • R
  • Statistics & Methods
24. November 2017
·

Jessica Gerhard
Team AI Academy

Ist der Datensatz in das gewünschte Statistikprogramm eingeladen, gibt es meist noch einige Stolperfallen, bevor man mit der Anwendung der Methode beginnen kann. Dies liegt oft daran, dass die Variablen nicht dem richtigen Typ zugewiesen sind. Wurden Werte, die eigentlich Zahlen sind, als Strings (Zeichenketten) abgespeichert, können beispielsweise keine Lagemaße der Verteilung berechnet werden. Nach dem Import der Daten sollte deshalb im nächsten Schritt der Datentyp der Variablen überprüft werden, der von der Statistiksoftware meist automatisch – und nicht immer richtig - zugewiesen wird.

Datensatz

Im vorherigen Beitrag wurden die verwendeten Daten bereits kurz vorgestellt. Es handelt sich dabei um die Aufzeichnung des Süßigkeitenkonsums von vier STATWORX-Mitarbeitern, deren realer Name durch den jeweiligen Lieblingsstatistiker ersetzt wurde. Der Kopf der Daten ist unten abgebildet.

Datenuebersicht

Datentypen

In der Informatik gibt es unzählige Datentypen, die vor allem durch ihren Speicherbedarf identifiziert werden. Die Aufzählung der Variablentypen wird hier stark vereinfacht vorgestellt. Generell können Variablen qualitativ als Strings (Zeichenketten) oder quantitativ in Zahlenform vorliegen. Zweitere lassen sich in Ganzzahlen und Dezimalzahlen unterscheiden.

Ein Spezialfall von Strings ist der Faktor. Dies ist eine ordinale Variable, die nur eine begrenzte Anzahl an Ausprägungen aufweist. Dabei wird jede Ausprägung als ein numerischer Wert dargestellt und mit Wertelabels versehen. Beispiel ist die Frage nach der Zufriedenheit mit einem Produkt, wobei mit den Zahlen 1 bis 5 die Zufriedenheit von „sehr unzufrieden“ bis „sehr zufrieden“ ausgedrückt werden kann.

Zu unterschieden ist außerdem das Messniveau von Daten. Daten können sowohl nominal sein, also ohne Reihenfolge, wie das Geschlecht oder ordinal, also geordnet und somit mit einer festen Reihenfolge, wie bei der Verwendung von Altersklassen. Weitere Messniveaus sind die Intervall- und die Verhältnisskala. Bei der Verhältnisskala bilden gleiche Intervalle auf der Skala gleiche Differenzen ab. Der Unterschied zwischen dem Wert 10 und 20 gibt also die gleiche Abweichung an wie die Differenz zwischen 30 und 40. Außerdem gibt es einen natürlichen Nullpunkt. Ein Beispiel hierfür ist das Längenmaß. Bei der Intervallskala gibt es zwar auch gleiche Abstände zwischen den einzelnen Ausprägungen, jedoch keinen absoluten Nullpunkt. Ein übliches Beispiel hierfür ist die Temperaturmessung in Grad Celsius.

Skala Anforderung Beispiel Ausprägungen
nominal Unterschiedlichkeit Geschlecht männlich, weiblich
ordinal Ordnung Süßigkeitenkonsum keiner, wenig, viel
Intervall Abstände gleich Grad Celsius 30, 43
Verhältnis natürlicher Nullpunkt Meterangabe 0, 1,00, 1,11, …

Bei Strings können innerhalb der Statistiksoftware interne Typen vorhanden sein, die die Zeichenkette näher klassifizieren, wie beispielsweise ein Datumsformat.

R

Die Struktur der Daten kann in R mit str() abgefragt werden. Für den Süßigkeiten-Datensatz erhalten wir folgendes Ergebnis:

Datensturktur in R - vorher

Der Typ einzelner Variablen (bzw. Vektoren) kann mit class() abgefragt werden. Es zeigt sich, dass die meisten Typen bereits richtig erkannt wurden. Generell können beliebige Datentypen mit den Funktionen as.datentyp() zugewiesen werden, beispielsweise as.numeric() oder as.character().

Die Mitarbeiter-Variable weist nur vier Ausprägungen auf. R hat dies erkannt und die Variable automatisch als Faktor mit den Werten 1 bis 4 kodiert und die Ausprägungen mit „Bayes“, „Gauss“, usw. benannt. So kann Speicherplatz gespart werden. Dass die Variable automatisch in einen Faktor umgewandelt wird liegt daran, dass bei data.frame die stringsAsFactors-Option automatisch auf TRUE gesetzt wird.

Die vier Variablen zum Süßigkeiten-Verzehr sind alle richtig als numerische Werte erkannt worden. Was jedoch auf den ersten Blick nicht klar wird, ist, dass die PickUp-Variable nicht angibt, wie viele Riegel am Tag verspeist wurden, sondern welche Sorte der Mitarbeiter am liebsten mag. Dabei soll der Wert 1 für die Sorte “Choco” stehen, 2 für “Choco & Caramel” und 3 für “Choco & Milch”. Ziel ist eine Faktorvariable, wie es auch bei den Mitarbeitern der Fall ist. Die Umsetzung ist in der Codebox unten zu finden. Je nachdem, ob der Faktor ordinale Werte aufweist oder nicht, kann die factor()- oder ordered()-Funktion verwendet werden. Die die Sorten keine Reihenfolge aufweisen, wird hier die factor()- Funktion verwendet.

Die Obst-Variable, soll auf ein Zehntel genau die Anzahl an gegessenen Obststücken darstellen. Leider wurde diese hier als String erkannt. Das liegt häufig am Dezimaltrennzeichen. Außerdem kann das Problem auftauchen, wenn in der Variable Strings, wie „keine Angabe“, enthalten sind.

Bleibt noch die Datumsvariable. Eine Option zur Umformung gängiger Datumsformate ist die as.Date()-Funktion. Mit dem format-Argument sollte die Struktur übergeben werden. In der Codebox unten ist die Umwandlung ins Datumsformat dargestellt. Allerdings gibt es in R noch viele andere, ausgefeiltere Wege, um mit Datumsformaten zu arbeiten, wie beispielsweise das lubridate-Paket.

# Erstellen eines (ungeordneten) Faktors aus der PickUp-Variable 
sweets$pickup <- factor(sweets$pickup, 
levels = c(1, 2, 3), 
labels = c("Choco", "Choco & Caramel", "Choco & Milch")) 

# Umwandlung der Obst-Variable ins Zahlenformat 
sweets$obst <- as.numeric(sweets$obst) 

# Umwandlung der Tag-Variable ins Datumsformat 
sweets$tag <- as.Date(sweets$tag, format ="%Y-%m-%d")

Nach der Anpassung der Datentypen zeigt ein erneuter Blick auf die Daten, dass nun alle Variablen den gewünschten Typ aufweisen.

Datensturktur in R - nachher

Stata

Generell wird in Stata nach Speichertyp und Anzeigeformat unterschieden. Ersterer zeigt an, wie viel Platz die Variable im Speicher belegt. Hierbei kann auch erkannt werden, ob es sich um eine Zeichenkette (= „str“ ; Zahl am Ende gibt die Länge an) oder um numerische Werte (= „byte“, „float“, „long“, „double“) handelt. Mit dem describe-Befehl kann die Struktur der Variablen angesehen werden.

Datensturktur in Stata - vorher

Kommen wir zunächst zur PickUp-Variable, die auch hier als numerisch eingelesen wurde, aber als Faktor definiert werden soll. Dafür muss als erstes, unabhängig von der Variable, eine Benennung definiert werden. Diese kann dann auf eine oder auch mehrere Variablen angewendet werden. In der Codebox unten wird zunächst mit dem label define-Befehl ein Label definiert, dass dann mit dem label values-Befehl auf die Variable angewandt wird.

Zunächst erscheint es vielleicht etwas umständlich, dass Label separat zu definieren und zuzuweisen, es gibt jedoch häufig Labels, die öfter verwendet werden, wie beispielsweise die Benennung der Werte 0 und 1 als „nein“ und „ja“ oder die Benennung einer Zufriedenheitsskala. Übrigens: Die numerischen Werte bei einer bereits gelabelten Variable können mit der Option nolabel beim tabulate-Befehl angesehen werden.

Als nächstes soll nun die Obst-Variable von einer Zeichenkette ins Zahlenformat umgewandelt werden. Dies wird in Stata mit dem destring-Befehl bewerkstelligt. Mit dem tostring-Befehl geht es in die umgekehrte Richtung, also vom Zahlenformat zum String. Bei beiden Befehlen muss mit der generate-Option ein neue Variable definiert werden. Der Grund dafür, dass der Variablentyp falsch erkannt wurde, ist das Komma als Dezimaltrenner (statt einem Punkt). Deshalb muss die dpcomma-Option angegeben werden, welche das Komma als Dezimaltrennzeichen definiert.

Das Datum sollte in den entsprechenden Typ umgewandelt werden, falls dieses für die Analyse wichtig ist, beispielsweise im Rahmen der Zeitreihenanalyse. Auch hier muss eine neue Variable erstellt werden, die den Tag im Datumsformat anzeigt. Wie auch bei R muss nach dem Variablennamen das Format, in der das Datum vorliegt, spezifiziert werden. Die so entstandene Variable wird nun im Stata-eigenen Format definiert. Mit dem Format-Befehl muss dann noch die Struktur ausgewählt werden, mit der das Datum dargestellt werden soll. Bei „%td“ handelt es sich beispielsweise um die Anzeige des Datums ohne Zeitangabe.

Die Mitarbeiter-Variable wird in Stata, im Gegensatz zu R, nicht automatisch als Faktor gespeichert. Sie ist als String gespeichert, was nicht zwingend verändert werden muss. Die Transformation ist dennoch unten dargestellt und kann hilfreich sein, wenn man die Variable aus Speicherplatzgründen umwandeln möchte.

Hierfür kann der encode-Befehl benutzt werden. Mit der label()-Option wird der neuerstellten numerischen Variable gleich das Label übergeben.

* Definition der PickUp-Variable als Faktor 
label define chocolabel 1 "Choco" 2 "Choco & Caramel" 3 "Choco & Milch" 
label values pickup chocolabel 

* Umwandlung der Obst-Variable ins Zahlenformat 
destring obst, generate(obst_destring) 

* Umwandlung der Tag-Variable ins Datumsformat 
gen tag_date = date(tag, "YMD") 
format tag_date %td 

* Definition der Mitarbeiter-Variable als Faktor 
encode mitarbeiter, gen(mitarbeiter_faktor) label()

Nach Ausführung der Befehle wagen wir erneut einen Blick auf die Struktur der Daten. Im Vergleich zum Resultat in R, wurden in Stata viele neue Variable generiert. Selbstverständlich können die ursprünglichen Variablen auch entfernt werden. In R und auch SPSS ist es generell leichter bestehende Variablen zu überschreiben als in Stata. Das ermöglicht einen besseren Überblick über die Daten, kann jedoch auch gefährlich werden, wenn Variablen unabsichtlich überschrieben werden.

Datensturktur in Stata - nachher

SPSS

Als nächstes wird die Anpassung des Datentyps in SPSS vorgestellt. Die Variablenansicht ist gut geeignet, um sich grundlegende Eigenschaften der Daten anzusehen. Für uns ist hier die Spalte "Typ" von Interesse. Diese gibt an, ob es sich beispielsweise um einen String, numerische Werte oder ein Datum handelt. In einer separaten Spalte wird das Messniveau dargestellt.

Über die Variablenansicht können auch händisch Änderungen vorgenommen werden. Dies kann jedoch leichter zu Fehlern führen, außerdem wollen wir hier die Syntax von SPSS vorstellen. So können die Änderungen auch für mehrere Variablen gleichzeitig ausgeführt werden. Zunächst, wie bisher auch, der Blick auf die Struktur der eingelesenen Daten:

Datensturktur in SPSS - vorher

Wieder wird die Datumsvariable nicht im vorgesehenen Typ erkannt. Außerdem soll die Pickup-Variable als gelabelter Faktor definiert werden. Die Obst-Variable mit den Dezimalwerten stellt in der Regel kein Problem dar, weil SPSS sowohl Punkt als auch Komma als Dezimaltrenner anerkennt. Aus diesem Grund wird der Variable auch automatisch eine Dezimalstelle zugeordnet.

Beginnen wir mit der Anpassung der PickUp-Variable. Mit dem VALUES LABELS-Befehl wird den numerischen Werte eine Bezeichnung übergeben. In der Datenansicht von SPSS kann über den Button „Wertelabels“ zwischen Anzeige der numerischen und gelabelten Werte umgeschaltet werden. Weitere Anpassungen müssen für die Variable nicht getroffen werden.

Um die Datumsvariable in das entsprechende Format umzuwandeln muss als erstes mit dem NUMBER-Befehl eine neue Variable erstellt werden. Nach der zu transformierenden Variable wird als zweites Argument die Reihenfolge des Datums erwartet. Eine direkte Umwandlung ist jedoch auch mit dem ALTER TYPE-Befehl möglich. Nähere Informationen zum Datumstyp sind hier zu finden.

Außerdem wird dargestellt, wie sich die String-Variable „Mitarbeiter“ in einen Faktor transformieren lässt. In diesem Beispiel hat der Anwender dadurch, außer geringerem Speicherplatz, keinen Vorteil, handelt es sich jedoch um eine Variable mit ordinalem Messniveau, muss diese Umwandlung erfolgen. Mit dem AUTORECODE-Befehl wird die String-Variable bequem in einen gelabelten, numerischen Faktor umgewandelt. Die Nummerierung erfolgt alphabetisch. Dies stellt hier kein Problem dar, bei einem Faktor mit ordinalem Messniveau kann dies jedoch zur Falle werden, wenn die Nummerierung automatisch erfolgt. Die (leider) einfachste Möglichkeit damit umzugehen ist, alle Werte einzeln mit dem RECODE-Befehl in numerische Größen umzustrukturieren und mit dem bereits bekannten Befehl zu labeln. Aus diesem Grund ist in der Codebox zusätzlich noch dargestellt, wie sich die Strings in Faktoren mit beliebigen Ausprägungen/beliebiger Reihenfolge umwandeln lassen.

Generell lässt sich der Variablentyp mit dem ALTER TYPE-Befehl verändern. Nach den Anpassungen blicken wir wieder auf die Variablentypen in der Variablenansicht.

Datensturktur in SPSS - nachher

Sowohl die neu erstellte Variable „tage_date“ als auch die transformierte Tag-Variable liegen nun im Datumsformat vor. Aus der String-Mitarbeiter-Variable wurden zwei Faktoren erstellt. Eine der beiden lässt sich sehr einfach generieren (mit AUTORECODE), die Erstellung der zweiten ist eher aufwändiger. Das Resultat der beiden ist jedoch sehr ähnlich: Beide weisen einen numerischen Typ als auch Wertelabels auf. Auch bei der PickUp-Variable werden jetzt Labels angezeigt.

* Definition der PickUp-Variable als Faktor 
VALUE LABELS pickup 1 "Choco" 2 "Choco & Caramel" 3 "Choco & Milch". 
EXECUTE. 

* Umwandlung der Obst-Variable ins Zahlenformat nicht notwendig, Komma automatisch als Dezimaltrenner erkannt. 

* Umwandlung der Tag-Variable ins Datumsformat 
COMPUTE tag_date=NUMBER(tag, SDATE10). 
FORMATS tag_date (SDATE10). 
EXECUTE. 

* Oder direkte Transformation des Datums:  
ALTER TYPE tag (SDATE10). 

* Definition der Mitarbeiter-Variable als Faktor 
AUTORECODE mitarbeiter /INTO mitarbeiter_faktor. 

* Mit beliebiger Nummerierung der Mitarbeiter-Variable 
RECODE mitarbeiter (CONVERT) ("Bayes" = 1) ("Pearson" = 2) ("Laplace" = 3) ("Gauss" = 4) INTO mitarbeiter_haendisch. 
VALUE LABELS mitarbeiter_haendisch 1 "Bayes" 2 "Pearson" 3 "Laplace" 4 "Gauss". 
EXECUTE.

Zusammenfassung

Dieser Blogbeitrag versucht die häufigsten Probleme im Zusammenhang mit Datentypen in R, Stata und SPSS aufzuzeigen. Es zeigt sich, dass der gleiche Schritt zur Datenaufbereitung, nämlich die Anpassung des Variablentyps, in den verschiedenen Softwareprogrammen völlig unterschiedlich umgesetzt wird. Auch die Transformation zwischen Typen innerhalb eines Statistikprogramms ist leider oft nicht intuitiv verständlich.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
Beratung vereinbaren
Zugehörige Leistungen
No items found.

Weitere Blogartikel

  • Artificial Intelligence
AI Trends Report 2025: Die 16 Trends im Überblick
Tarik Ashry
05. Februar 2025
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in der Praxis: Mit der richtigen Methode die Black Box öffnen
Jonas Wacker
15. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • GenAI
Wie ein CustomGPT Effizienz und Kreativität bei hagebau fördert
Tarik Ashry
06. November 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz
Tarik Ashry
05. September 2024
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Der AI-Act ist da – diese Risikoklassen sollte man kennen
Fabian Müller
05. August 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 4)
Tarik Ashry
31. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 3)
Tarik Ashry
24. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 2)
Tarik Ashry
17. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)
Tarik Ashry
10. Juli 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Generative KI als Denkmaschine? Ein medientheoretischer Blick
Tarik Ashry
13. Juni 2024
Mehr erfahren
  • Artificial Intelligence
  • GenAI
  • statworx
Maßgeschneiderte KI-Chatbots: Hohe Leistung und schnelle Integration vereint
Tarik Ashry
10. April 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
Wie Führungskräfte die Datenkultur im Unternehmen stärken können
Tarik Ashry
21. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
KI in der Arbeitswelt: Wie wir Skepsis in Zuversicht verwandeln
Tarik Ashry
08. Februar 2024
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Wie wir für Microsoft einen Chatbot mit echtem Wissen entwickelt haben
Team statworx
27. September 2023
Mehr erfahren
  • Data Science
  • Data Visualization
  • Frontend Solution
Warum Frontend-Entwicklung in Data Science-Anwendungen nützlich ist
Jakob Gepp
30. August 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - Wie wir ein KI-gesteuertes Pop-up Restaurant aufgebaut haben
Sebastian Heinz
14. Juni 2023
Mehr erfahren
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. Mai 2023
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act
Team statworx
17. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Team statworx
11. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Genderdarstellung in der KI – Teil 2: Automatisierte Erzeugung genderneutraler Versionen von Gesichtsbildern
Team statworx
03. Mai 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
Ein erster Einblick in unser Forecasting Recommender Tool
Team statworx
26. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
Vom Können, Tun und Wollen – Warum Datenkultur und Death Metal einiges miteinander gemeinsam haben
David Schlepps
19. April 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 – Eine Einordnung der wichtigsten Neuerungen
Mareike Flögel
17. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Strategy
Das Geheimnis der Datenkultur entschlüsseln: Diese Faktoren beeinflussen Kultur und Erfolg von Unternehmen
Team statworx
16. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Wie man KI-generierte Avatare mit Hilfe von Stable Diffusion und Textual Inversion erstellt
Team statworx
08. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management mit NLP: So einfach verarbeitet man E-Mails mit KI
Team statworx
02. März 2023
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 Anwendungsfälle, wie ChatGPT die Kommunikation in Unternehmen revolutionieren wird
Ingo Marquart
16. Februar 2023
Mehr erfahren
  • Recap
  • statworx
Ho ho ho – weihnachtlicher Küchenabriss
Julius Heinz
22. Dezember 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-time Computer Vision: Gesichter erkennen mit einem Roboter
Sarah Sester
30. November 2022
Mehr erfahren
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigmenwechsel in NLP: 5 Ansätze, um bessere Prompts zu schreiben
Team statworx
26. Oktober 2022
Mehr erfahren
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. Oktober 2022
Mehr erfahren
  • Data Engineering
  • Data Science
Überwachung und Protokollierung von Anwendungen und Infrastruktur: Metriken und (Ereignis-)Protokolle
Team statworx
29. September 2022
Mehr erfahren
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Textklassifikation
Fabian Müller
29. September 2022
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Data Science
Wie du dein Data Science Projekt fit für die Cloud machst
Alexander Broska
14. September 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Geschlechter­darstellung in der KI – Teil 1: Verwendung von StyleGAN zur Erforschung von Geschlechter­vielfalt bei der Bild­bearbeitung
Isabel Hermes
18. August 2022
Mehr erfahren
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Warum wir eigene KI-Prinzipien entwickeln
Team statworx
04. August 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Python
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst
Thomas Alcock
21. Juli 2022
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: Von Model-First zu Data-First KI-Prozessen
Team statworx
13. Juli 2022
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Warum Diskriminierung in der KI-Entwicklung nicht ignoriert werden kann
Team statworx
28. Juni 2022
Mehr erfahren
  • R
Das helfRlein Package – Eine Sammlung nützlicher Funktionen
Team statworx
23. Juni 2022
Mehr erfahren
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. Mai 2022
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Vorurteile in KI abbauen
Team statworx
08. März 2022
Mehr erfahren
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
Wie du als Data Scientist deinen KI CO₂ Fußabdruck verringerst
Team statworx
02. Februar 2022
Mehr erfahren
  • Recap
  • statworx
2022 und die Reise zu statworx next
Sebastian Heinz
06. Januar 2022
Mehr erfahren
  • Recap
  • statworx
5 Highlights vom Digital Festival Zürich 2021
Team statworx
25. November 2021
Mehr erfahren
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Warum Data Science und KI-Initiativen scheitern – eine Reflektion zu nicht-technischen Faktoren
Team statworx
22. September 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Kolumne: Mensch und Maschine Seite an Seite
Sebastian Heinz
03. September 2021
Mehr erfahren
  • Coding
  • Data Science
  • Python
Wie man mit Call Graph automatisch Projektgrafiken erstellt
Team statworx
25. August 2021
Mehr erfahren
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet für Data Science
Team statworx
13. August 2021
Mehr erfahren
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle bereitstellen und skalieren mit Kubernetes
Team statworx
29. Juli 2021
Mehr erfahren
  • Cloud Technology
  • Data Engineering
  • Machine Learning

3 Szenarien zum Deployment von Machine Learning Workflows mittels MLflow
Team statworx
30. Juni 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning

Car Model Classification III: Erklärbarkeit von Deep Learning Modellen mit Grad-CAM
Team statworx
19. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deployment von TensorFlow-Modellen in Docker mit TensorFlow Serving
Team statworx
12. Mai 2021
Mehr erfahren
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning mit ResNet
Team statworx
05. Mai 2021
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integration von Deep Learning Modellen mit Dash
Dominique Lade
05. Mai 2021
Mehr erfahren
  • AI Act
Potenzial noch nicht ausgeschöpft – Ein Kommentar zur vorgeschlagenen KI-Regulierung der EU
Team statworx
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – Revolutionierung des Designprozesses mit Machine Learning
Team statworx
31. März 2021
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Typen von Machine Learning Algorithmen (Mit Anwendungsfällen)
Team statworx
24. März 2021
Mehr erfahren
  • Recaps
  • statworx
2020 – Ein Rückblick für mich und GPT-3
Sebastian Heinz
23. Dezember 2020
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 praxisnahe Beispiele für NLP Use Cases
Team statworx
12. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Die 5 wichtigsten Use Cases für Computer Vision
Team statworx
05. November 2020
Mehr erfahren
  • Data Science
  • Deep Learning
Neue Trends im Natural Language Processing – Wie NLP massentauglich wird
Dominique Lade
29. Oktober 2020
Mehr erfahren
  • Data Engineering
5 Technologien, die jeder Data Engineer kennen sollte
Team statworx
22. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Data Science
  • Machine Learning
Generative Adversarial Networks: Wie mit Neuronalen Netzen Daten generiert werden können
Team statworx
15. Oktober 2020
Mehr erfahren
  • Coding
  • Data Science
  • Deep Learning
Finetuning von Tesseract-OCR für deutsche Rechnungen
Team statworx
08. Oktober 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
Whitepaper: Ein Reifegradmodell für Künstliche Intelligenz
Team statworx
06. Oktober 2020
Mehr erfahren
  • Data Engineering
  • Data Science
  • Machine Learning
Machine Learning Modelle mit Hilfe von Docker Containern bereitstellen
Thomas Alcock
01. Oktober 2020
Mehr erfahren
  • Recap
  • statworx
STATWORX 2.0 – Das neue Headquarter in Frankfurt ist eröffnet
Julius Heinz
24. September 2020
Mehr erfahren
  • Machine Learning
  • Python
  • Tutorial
Wie man eine Machine Learning API mit Python und Flask erstellt
Team statworx
29. Juli 2020
Mehr erfahren
  • Data Science
  • Statistics & Methods
Modellregularisierung – The Bayesian Way
Thomas Alcock
15. Juli 2020
Mehr erfahren
  • Recap
  • statworx
Auf zu neuen Abenteuern: Soft Opening des STATWORX Büros
Team statworx
14. Juli 2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie Du ShinyApps in Docker-Images einbauen kannst
Team statworx
15. Mai 2020
Mehr erfahren
  • Coding
  • Python
Making Of: Eine kostenlose API für COVID-19-Daten
Sebastian Heinz
01. April 2020
Mehr erfahren
  • Frontend
  • Python
  • Tutorial
Wie Du ein Dashboard In Python baust – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. März 2020
Mehr erfahren
  • Coding
  • R
Warum heißen sie so?! – Ursprung und Bedeutung von R-Paketnamen
Team statworx
19. März 2020
Mehr erfahren
  • Data Visualization
  • R
Gemeinschaftsdetektion mit Louvain und Infomap
Team statworx
04. März 2020
Mehr erfahren
  • Coding
  • Data Engineering
  • Data Science
Testen von REST-APIs mit Newman
Team statworx
26. Februar 2020
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI-Elemente in Shiny - Teil 2
Team statworx
19. Februar 2020
Mehr erfahren
  • Coding
  • Data Visualization
  • R
Animierte Plots mit ggplot und gganimate
Team statworx
14. Februar 2020
Mehr erfahren
  • Machine Learning
Machine Learning Goes Causal II: Der kausale Bruder des Random Forests
Team statworx
05. Februar 2020
Mehr erfahren
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Warum Kausalität wichtig ist
Team statworx
29.01.2020
Mehr erfahren
  • Data Engineering
  • R
  • Tutorial
Wie man REST-APIs mit R Plumber erstellt
Stephan Emmer
23. Januar 2020
Mehr erfahren
  • Recaps
  • statworx
statworx 2019 – Ein Jahresrückblick
Sebastian Heinz
20. Dezember 2019
Mehr erfahren
  • Artificial Intelligence
  • Deep Learning
Deep Learning – Überblick und Einstieg
Team statworx
04. Dezember 2019
Mehr erfahren
  • Coding
  • Machine Learning
  • R
Abstimmung von Random Forest auf Zeitreihendaten
Team statworx
21. November 2019
Mehr erfahren
  • Data Science
  • R
Kombination von Preiselastizitäten und Verkaufsprognosen zur Verkaufssteigerung
Team statworx
06. November 2019
Mehr erfahren
  • Data Engineering
  • Python
Von überall aus auf deinen Spark-Cluster zugreifen – mit Apache Livy
Team statworx
30. Oktober 2019
Mehr erfahren
  • Recap
  • statworx
STATWORX auf Tour: Wein, Burgen & Wandern!
Team statworx
18. Oktober 2019
Mehr erfahren
  • Data Science
  • R
  • Statistics & Methods
Wie man eine Kreuzvalidierung zur Evaluation der Modellperformance von Grund auf selbst erstellt
Team statworx
02. Oktober 2019
Mehr erfahren
  • Data Science
  • Machine Learning
  • R
Zeitreihenvorhersage mit Random Forest
Team statworx
25. September 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Dynamische UI Elemente in Shiny – Teil 1
Team statworx
11. September 2019
Mehr erfahren
  • Machine Learning
  • R
  • Statistics & Methods
Was dem MAPE fälschlicherweise vorgeworfen wird, seine WAHREN Schwächen und BESSERE Alternativen!
Team statworx
16. August 2019
Mehr erfahren
  • Coding
  • Python
Web Scraping 101 in Python mit Requests & BeautifulSoup
Team statworx
31. Juli 2019
Mehr erfahren
  • Coding
  • Frontend
  • R
Einstieg in Flexdashboards in R
Thomas Alcock
19. Juli 2019
Mehr erfahren
  • Recap
  • statworx
statworx Sommer-Barbecue 2019
Team statworx
21. Juni 2019
Mehr erfahren
  • Data Visualization
  • R
Interaktive Netzwerkvisualisierung mit R
Team statworx
12. Juni 2019
Mehr erfahren
  • Deep Learning
  • Python
  • Tutorial
Verwendung von Reinforcement Learning zum Spielen von Super Mario Bros auf NES mit TensorFlow
Sebastian Heinz
29. Mai 2019
Mehr erfahren
No items found.
This is some text inside of a div block.
This is some text inside of a div block.