Experimente zur Bilderkennung durch die Genderbrille
Im ersten Teil unserer Serie haben wir uns mit einer einfachen Frage beschäftigt: Wie würde sich unser Aussehen verändern, wenn wir Fotos von uns entlang des Genderspektrums bewegen würden? Aus diesen Experimenten entstand die Idee, genderneutrale Gesichtsbilder aus vorhandenen Fotos zu erstellen. Gibt es einen Punkt in der Mitte, an dem wir unser „Gender”, unser Geschlecht, als neutral wahrnehmen? Und außerdem: Wann würde eine KI ein Gesicht als genderneutral wahrnehmen?
Bewusstsein für die Technologie, die wir täglich nutzen
Die Bilderkennung ist ein wichtiges Thema. Diese Technologie entwickelt sich täglich weiter und wird in einer Vielzahl von Anwendungen eingesetzt – oft ohne, dass Benutzer:innen wissen, wie die Technologie funktioniert. Ein aktuelles Beispiel ist der „Bold-Glamour-Filter“ auf TikTok. Bei Anwendung mit weiblich aussehenden Gesichtern ändern sich Gesichtsmerkmale und Make-up drastisch. Im Gegensatz dazu ändern sich männlich aussehende Gesichter deutlich weniger. Dieser Unterschied lässt vermuten, dass die KI hinter den Filtern mit unausgewogenen Daten entwickelt wurde. Die Technologie dahinter basiert höchstwahrscheinlich auf sogenannten „General Adversarial Networks“ (GANs), also dieselbe Art von KI, die wir in diesem Artikel untersuchen.
Als eine Gesellschaft bewusster Bürger:innen sollten wir alle die Technologie verstehen, die solche Anwendungen ermöglicht. Um das Bewusstsein dafür zu schärfen, untersuchen wir die Erzeugung und Klassifizierung von Gesichtsbildern durch eine genderspezifische Brille. Anstatt mehrere Schritte entlang des Spektrums zu erforschen, besteht unser Ziel dieses Mal darin, geschlechtsneutrale Versionen von Gesichtern zu erzeugen.
Wie man genderneutrale Gesichter mit StyleGAN generiert
Ein Deep-Learning-Modell zur Geschlechtsidentifizierung
Es ist alles andere als trivial, einen Punkt zu bestimmen, ab dem das Gender eines Gesichts als neutral gilt. Nachdem wir uns auf unsere eigene (natürlich nicht unvoreingenommene) Interpretation von Gender in Gesichtern verlassen hatten, wurde uns schnell klar, dass wir eine konsistente und weniger subjektive Lösung benötigen. Als KI-Spezialist:innen dachten wir sofort an datengetriebene Ansätze. Ein solcher Ansatz kann mit einem auf Deep Learning basierenden Bildklassifikator umgesetzt werden.
Solche Klassifikationsmodelle werden in der Regel auf großen Datensätzen mit gekennzeichneten Bildern trainiert, um zwischen festgelegten Kategorien zu unterscheiden. Bei der Klassifizierung von Gesichtern sind Kategorien wie Gender (in der Regel nur weiblich und männlich) und ethnische Zugehörigkeit übliche Kategorien. In der Praxis werden solche Modelle oft wegen ihres Missbrauchspotenzials und ihrer Unfairness kritisiert. Bevor wir Beispiele für diese Probleme erörtern, werden wir uns zunächst auf unser weniger kritisches Szenario konzentrieren. In unserem Anwendungsfall ermöglichen es uns Klassifikationsmodelle, die Erstellung von genderneutralen Portraits vollständig zu automatisieren. Um dies zu erreichen, können wir folgendermaßen eine Lösung implementieren:
Wir verwenden einen GAN-basierten Ansatz, um Portraits zu erzeugen, die auf einem gegebenen Inputbild basieren. Dazu verwenden wir die latenten Richtungen des gelernten Genderspektrums des GAN, um das Bild in Richtung eines eher weiblichen oder männlichen Aussehens zu bewegen. Eine detaillierte Untersuchung dieses Prozesses ist im ersten Teil unserer Serie zu finden. Aufbauend auf diesem Ansatz wollen wir uns auf die Verwendung eines binären Gender-Klassifikators konzentrieren, um die Suche nach einem genderneutralen Aussehen vollständig zu automatisieren.
Dazu verwenden wir den von Furkan Gulsen entwickelten Klassifikator, um das Gender der GAN-generierten Version unseres Eingabebildes zu erraten. Der Klassifikator gibt einen Wert zwischen Null und Eins aus, um die Wahrscheinlichkeit darzustellen, dass das Bild ein weibliches bzw. männliches Gesicht darstellt. Dieser Wert sagt uns, in welche Richtung (eher männlich oder eher weiblich) wir uns bewegen müssen, um uns einer geschlechtsneutralen Version des Bildes anzunähern. Nachdem wir einen kleinen Schritt in die ermittelte Richtung gemacht haben, wiederholen wir den Vorgang, bis wir zu einem Punkt gelangen, an dem der Klassifikator das Gender des Gesichts nicht mehr sicher bestimmen kann. Dieser Punkt ist erreicht, sobald der Klassifikator die männliche als auch die weibliche Kategorie für gleich wahrscheinlich hält.
Die folgenden Beispiele illustrieren diesen Status und repräsentieren unsere Ergebnisse. Auf der linken Seite ist das Originalbild zu sehen. Rechts sehen wir die genderneutrale Version des Portraits, welches der Klassifikator mit gleicher Wahrscheinlichkeit als männlich oder weiblich interpretiert. Wir haben versucht, das Experiment für Mitglieder verschiedener Ethnien und Altersgruppen zu wiederholen.
Resultat: Originalportrait und KI-generierter, genderneutraler Output
Bist du neugierig, wie der Code funktioniert oder wie du selbst aussehen würdest? Du kannst den Code, mit dem wir diese Bildpaare erzeugt haben, unter diesem Link ausprobieren. Drücke einfach nacheinander auf jeden Play-Button und warte, bis du das grüne Häkchen siehst.
Hinweis: Wir haben ein bestehendes GAN, einen Bild-Encoder und einen Gesichter-Klassifikator verwendet, um einen genderneutralen Output zu generieren. Eine detaillierte Untersuchung dieses Prozesses ist hier zu finden.
Wahrgenommene Genderneutralität scheint eine Folge von gemischten Gesichtszügen zu sein
Oben sehen wir die Originalportraits verschiedener Personen auf der linken Seite und rechts ihr genderneutrales Gegenstück – von uns erstellt. Subjektiv fühlen sich einige “neutraler” an als andere. In einigen der Bilder bleiben besonders stereotype Gendermerkmale erhalten, wie z. B. Make-up bei den Frauen und eine eckige Kieferpartie bei den Männern. Als besonders überzeugend empfinden wir die Ergebnisse von Bild 2 und Bild 4. Bei diesen Bildpaaren ist es nicht nur schwieriger, die ursprüngliche Person zurückzuverfolgen, sondern es ist auch viel schwieriger zu entscheiden, ob das Gesicht eher männlich oder weiblich wirkt. Man könnte argumentieren, dass die genderneutralen Gesichter eine ausgewogene, abgeschwächte Mischung aus männlichen und weiblichen Gesichtszügen besitzen. Wenn man beispielsweise Teile der genderneutralen Version von Bild 2 herausgreift und sich darauf konzentriert, erscheinen die Augen- und Mundpartien eher weiblich, während die Kieferlinie und die Gesichtsform eher männlich wirken. Bei der genderneutralen Version von Bild 3 mag das Gesicht allein recht neutral aussehen, aber die kurzen Haare lenken davon ab, so dass der Gesamteindruck in Richtung männlich geht.
Die Trainingsdaten für die Bilderzeugung wurden heftig kritisiert, weil sie nicht repräsentativ für die bestehende Bevölkerung sind, insbesondere was die Unterrepräsentation verschiedener Ethnien und Gender betrifft. Trotz „Cherry Picking“ und einer begrenzten Auswahl an Beispielen sind wir der Meinung, dass unser Ansatz in den obigen Ergebnissen keine schlechteren Beispiele für Frauen oder People of Color hervorgebracht hat.
Gesellschaftliche Bedeutung solcher Modelle
Wenn wir über das Thema der Genderwahrnehmung sprechen, sollten wir nicht vergessen, dass Menschen sich einem anderen Gender zugehörig fühlen können als ihrem biologischen Geschlecht. In diesem Artikel verwenden wir Modelle zur Genderklassifizierung und interpretieren die Ergebnisse. Unsere Einschätzungen werden jedoch wahrscheinlich von der Wahrnehmung anderer Menschen abweichen. Dies ist eine wesentliche Überlegung bei der Anwendung solcher Bildklassifizierungsmodelle und eine, die wir als Gesellschaft diskutieren müssen.
Wie kann Technologie alle gleich behandeln?
Eine Studie des Guardian hat ergeben, dass Bilder von Frauen, die in denselben Situationen wie Männer dargestellt werden, von den KI-Klassifizierungsdiensten von Microsoft, Google und AWS mit größerer Wahrscheinlichkeit als anzüglich eingestuft werden. Die Ergebnisse dieser Untersuchung sind zwar schockierend, aber nicht überraschend. Damit ein Klassifizierungsalgorithmus lernen kann, was anstößige Inhalte sind, müssen Trainingsdaten von Bild- und Label-Paaren erstellt werden. Diese Aufgabe übernehmen Menschen. Sie werden durch ihre eigene soziale Voreingenommenheit beeinflusst und assoziieren beispielsweise Darstellungen von Frauen schneller mit Sexualität. Außerdem sind Kriterien wie „Anzüglichkeit” schwer zu quantifizieren, geschweige denn zu definieren.
Auch wenn diese Modelle nicht ausdrücklich auf die Unterscheidung zwischen den Geschlechtern trainiert werden, besteht kaum ein Zweifel daran, dass sie unerwünschte Vorurteile gegenüber Frauen verbreiten, die aus ihren Trainingsdaten stammen. Ebenso können gesellschaftliche Vorurteile, die Männer betreffen, an KI-Modelle weitergegeben werden. Bei der Anwendung auf Millionen von Online-Bildern von Menschen wird das Problem der Geschlechterungleichheit noch verstärkt.
Verwendung in der Strafverfolgung wirft Probleme auf
Ein weiteres Szenario für den Missbrauch von Bildklassifizierungstechnologie besteht in der Strafverfolgung. Fehlklassifizierungen sind problematisch und werden in einem Artikel von The Independent als weit verbreitet dargestellt. Als die Erkennungssoftware von Amazon in einer Studie aus dem Jahr 2018 mit einem Konfidenzniveau von 80 % verwendet wurde, ordnete die Software 105 von 1959 Teilnehmer:innen fälschlicherweise Fahndungsfotos von Verbrecher:innen zu. Angesichts der oben beschriebenen Probleme mit der Verarbeitung von Bildern, auf denen Männer und Frauen abgebildet sind, könnte man sich ein ernüchterndes Szenario vorstellen, wenn man das Verhalten von Frauen im öffentlichen Raum beurteilt. Wenn Männer und Frauen für dieselben Handlungen oder Positionen unterschiedlich beurteilt werden, würde dies das Recht aller auf Gleichbehandlung vor dem Gesetz beeinträchtigen. Der Bayerische Rundfunk hat eine interaktive Seite veröffentlicht, auf der die unterschiedlichen Einstufungen der KI-Klassifizierungsdienste mit der eigenen Einschätzung verglichen werden können.
Verwendung genderneutraler Bilder zur Vermeidung von Vorurteilen
Neben den positiven gesellschaftlichen Potenzialen der Bildklassifizierung wollen wir auch einige mögliche praktische Anwendungen ansprechen, die sich aus der Möglichkeit ergeben, mehr als nur zwei Gender abzudecken. Eine Anwendung, die uns in den Sinn kam, ist die Verwendung von “genderlosen” Bildern, um Vorurteile zu vermeiden. Ein solcher Filter würde einen Verlust an Individualität bedeuten, sodass er nur in Kontexten anwendbar wäre, in denen der Nutzen der Verringerung von Vorurteilen die Kosten dieses Verlusts überwiegt.
Vision einer Browsererweiterung für den Bewerbungsprozess
Die Personalauswahl könnte ein Bereich sein, in dem genderneutrale Bilder zu weniger genderbasierter Diskriminierung führen könnten. Vorbei sind die Zeiten der gesichtslosen Bewerbungen: Wenn ein LinkedIn-Profil ein Profilbild hat, ist die Wahrscheinlichkeit, dass es angesehen wird, 14-mal höher . Bei der Prüfung von Bewerbungsprofilen sollten Personalverantwortliche idealerweise frei von unbewussten, ungewollten genderspezifischen Vorurteilen sein. Die menschliche Natur verhindert dies. So könnte man sich eine Browsererweiterung vorstellen, die eine genderneutrale Version von Profilfotos auf professionellen Social-Networking-Seiten wie LinkedIn oder Xing generiert. Dies könnte zu mehr Gleichheit und Neutralität im Einstellungsprozess führen, bei dem nur die Fähigkeiten und der Charakter zählen sollten, nicht aber das Geschlecht – oder das Aussehen (ein schönes Privileg).
Schlusswort
Wir haben uns zum Ziel gesetzt, automatisch genderneutrale Versionen aus einem beliebigen Portrait zu erzeugen.
Unsere Implementierung automatisiert in der Tat die Erstellung von genderneutralen Gesichtern. Wir haben ein bestehendes GAN, einen Bild-Encoder und einen Gesichter-Klassifikator verwendet. Unsere Experimente mit den Portraits oben zeigen, dass der Ansatz in vielen Fällen gut funktioniert und realistisch aussehende Gesichtsbilder erzeugt, die dem Eingabebild deutlich ähneln und dabei genderneutral bleiben.
In einigen Fällen haben wir jedoch festgestellt, dass die vermeintlich neutralen Bilder Artefakte von technischen Störungen enthalten oder noch ihr erkennbares Gender haben. Diese Einschränkungen ergeben sich wahrscheinlich aus der Beschaffenheit des latenten Raums des GANs oder aus dem Mangel an künstlich erzeugten Bildern in den Trainingsdaten des Klassifikators. Wir sind zuversichtlich, dass weitere Arbeiten die meisten dieser Probleme für reale Anwendungen lösen können.
Die Fähigkeit der Gesellschaft, eine fundierte Diskussion über Fortschritte in der KI zu führen, ist von entscheidender Bedeutung
Bildklassifizierung hat weitreichende Folgen und sollte von der Gesellschaft und nicht nur von einigen wenigen Expert:innen bewertet und diskutiert werden. Jeder Bildklassifikationsdienst, der dazu dient, Menschen in Kategorien einzuteilen, sollte genau geprüft werden. Was vermieden werden muss, ist, dass Mitglieder der Gesellschaft zu Schaden kommen. Die Einführung eines verantwortungsvollen Umgangs mit solchen Systemen, die Kontrolle und die ständige Bewertung sind unerlässlich. Eine weitere Lösung könnte darin bestehen, Strukturen für die Begründung von Entscheidungen zu schaffen und dabei die Best Practices von Explainable AI zu nutzen, um darzulegen, warum bestimmte Entscheidungen getroffen wurden. Als Unternehmen im Bereich der KI sehen wir bei statworx unsere KI-Prinzipien als Wegweiser.
Bildnachweise:
AdobeStock 210526825 – Wayhome Studio
AdobeStock 243124072 – Damir Khabirov
AdobeStock 387860637 – insta_photos
AdobeStock 395297652 – Nattakorn
AdobeStock 480057743 – Chris
AdobeStock 573362719 – Xavier Lorenzo
AdobeStock 546222209 – Rrose Selavy