de
                    array(2) {
  ["de"]=>
  array(13) {
    ["code"]=>
    string(2) "de"
    ["id"]=>
    string(1) "3"
    ["native_name"]=>
    string(7) "Deutsch"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    string(1) "1"
    ["default_locale"]=>
    string(5) "de_DE"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "de"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(7) "Deutsch"
    ["url"]=>
    string(109) "https://www.statworx.com/content-hub/blog/zurueck-in-die-zukunft-die-geschichte-von-generativer-ki-episode-1/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/de.png"
    ["language_code"]=>
    string(2) "de"
  }
  ["en"]=>
  array(13) {
    ["code"]=>
    string(2) "en"
    ["id"]=>
    string(1) "1"
    ["native_name"]=>
    string(7) "English"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    int(0)
    ["default_locale"]=>
    string(5) "en_US"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "en"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(8) "Englisch"
    ["url"]=>
    string(101) "https://www.statworx.com/en/content-hub/blog/back-to-the-future-the-story-of-generative-ai-episode-1/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/en.png"
    ["language_code"]=>
    string(2) "en"
  }
}
                    
Kontakt
Content Hub
Blog Post

Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)

  • Expert:innen Tarik Ashry
  • Datum 10. Juli 2024
  • Thema Artificial IntelligenceGenAIstatworx
  • Format Blog
  • Kategorie Technology
Zurück in die Zukunft: Die Geschichte von Generativer KI (Episode 1)

Willkommen zu unserer vierteiligen Blogserie zur Geschichte von Generativer Künstlicher Intelligenz. Unser Streifzug durch die Geschichte wird die bedeutenden Meilensteine beleuchten und aufzeigen, wie sich mit jedem Entwicklungsschritt das gesamte Konzept von generativer KI grundlegend gewandelt hat. Von den ersten Gehversuchen, mit Stift und Papier Wahrscheinlichkeitsverteilungen zu skizzieren, bis hin zu den heutigen hochentwickelten Algorithmen, die komplexe und kreative Inhalte generieren – jeder der vier Schritte markiert eine Revolution, kein bloßes Update.

Warum die Geschichte der generativen KI so spannend ist? Weil sie zeigt, wie sich mit jedem technologischen Fortschritt nicht nur die Methoden, sondern auch die Annahmen, die Nutzung, das Publikum und die Interaktion mit den Modellen komplett verändert haben. Was einst als Werkzeug für statistische Analysen begann, ist heute ein kreativer Partner, der in der Lage ist, Kunst, Musik, Text und vieles mehr zu schaffen.

Komm mit uns mit auf die Reise durch die Geschichte von GenAI.

Epoche 1 – Grundlagen

Ein gut gehütetes Geheimnis: Wenn man die Buchstaben von „Data Science“ umstellt, erhält man „Statistik“. Kleiner Scherz. Aber tatsächlich stimmt es, dass die Wurzeln der Datenwissenschaft weit zurückreichen, bis ins 18. Jahrhundert. Damals hatten α, Θ und andere mathematische Symbole noch eher den Charme von Mottenkugeln als von Venture Capital.

Mathematiker wie Gauß, Bayes und eine Reihe kluger Franzosen erkannten schon früh den Wert des Zählens. Sie zählten, zählten noch einmal und verglichen die Ergebnisse – alles per Hand und sehr aufwendig. Doch diese Methoden sind auch heute noch aktuell und bewährt – ein echter Evergreen!

Mit der Erfindung des elektrischen Stroms und dessen Verfügbarkeit begann eine neue Ära. Man konnte nun Daten wesentlich effizienter verarbeiten und auswerten. Die Vorstellung einer „elektronischen Murmelbahn“ für Daten entstand – ein System mit Weichen und Pfaden, das je nach Dateninput verschiedene Aktionen auslöste, wie das Aufleuchten einer Glühbirne oder das Ausführen einer Funktion.

Eine frühe, tatsächlich einsatzfähige Form der Künstlichen Intelligenz war geboren: Algorithmen, die auf Beobachtungen und abgeleiteten Regeln basieren.

Zeitraum Paradigmen Techniken Nutzerprofil Beispiele
1700-1960 Stift, Lötkolben, Lochkarte Zählen, Sortieren, Annahmen treffen Ingenieure, Fabrikanten, Forscher Buchhaltung, Fließbänder, Naturwissenschaften
1960-2010 Programmieren von anwendungs- spezifischem Code Die Gleichen wie zu zuvor, jedoch automatisiert Statistiker, Informatiker, erste Data Scientists und Machine Learning Forscher Spamfilter, (Sentiment-) Analyse von Texten, Optical Character Recognition OCR

Aber was macht diese frühen Modelle generativ? Nun, die „elektronische Murmelbahn“ konnte auch rückwärts betrieben werden. Vorwärts war sie ein statistisches Modell, das einer Beobachtung eine Kategorie oder einen Wert zuordnete. Dafür musste das Modell eine Vorstellung von den Daten haben. Rückwärts jedoch konnten durch zufällige Ziehungen hochwahrscheinliche Exemplare von Pilzen, Murmeln, Daten – sprich, Bilder oder Tabellen – erzeugt werden. Die generativen Fähigkeiten der Modelle wurden jedoch oft unterschätzt, da die Vorwärts-Funktion im Fokus stand.

Diese Methodik nennt sich Naïve Bayesian Classifier. „Naiv“ ist hier nicht abwertend gemeint, sondern bezieht sich auf vereinfachende Annahmen, die die Modellierung erheblich erleichtern. Bei naiven Methoden muss man keine komplexen Zusammenhänge zwischen Variablen wie Myzel, Stiel und Hut eines Pilzes unterstellen. Man sagt einfach: Wenn die durchschnittliche Qualität aller drei Teile gut genug ist, dann ist der Pilz gut.

Einige der ersten Anwendungen dieser Modelle waren die Handschrifterkennung (zum Beispiel bei der Post, bekannt als Optical Character Recognition, oder OCR) sowie bis heute Spam-Filter und allgemeine Textanalysen.

Das war der erste Einblick in die Grundlagen der generativen Künstlichen Intelligenz. Im nächsten Teil unserer Serie tauchen wir in die Welt der neuronalen Netze und maschinellen Lernens ein, die das Fundament für die modernen KI-Systeme gelegt haben. Bleibt neugierig und verpasst nicht den nächsten Meilenstein in der Geschichte der generativen KI!

Verpasse nicht Teil 2 unserer Blogserie. Tarik Ashry Tarik Ashry, Max Hilsdorf

Mehr erfahren!

Als eines der führenden Beratungs- und Entwicklungs­unternehmen für Data Science und KI begleiten wir Unternehmen in die datengetriebene Zukunft. Erfahre mehr über statworx und darüber, was uns antreibt.
Über uns