Data Science, Machine Learning und KI
Kontakt
Content Hub
Blog Post

STATWORX meets DHBW – Data Science Real-World Use Cases

  • Expert:innen Paul Mora
  • Datum 04. August 2021
  • Thema Data SciencestatworxStrategy
  • Format Blog
  • Kategorie ManagementTechnology
STATWORX meets DHBW – Data Science Real-World Use Cases

Data Science ist in aller Munde, doch wie lässt es sich am besten im Unternehmen einsetzen? Was muss man bei der Planung eines AI Projektes beachten? Was sind die Risiken, und was sind die potenziellen Vorteile? Es sind genau diese Fragen, mit welchen sich die Studierenden der Dualen Hochschulen Baden-Württemberg im Rahmen der Gastvorlesung mit STATWORX auseinandergesetzt haben.

Aspekte der Vorlesung

Anfang Juni haben unser COO Fabian Müller und Data Science Consultant Paul Mora eine Vorlesung im Rahmen des Wirtschaftsingenieur-Studienganges der DHBW gehalten. Der Fokus der Vorlesung war es, den Studierenden bewusst zu machen welche Aspekte es bei der Planung und Evaluierung eines Data Science Projektes zu beachten gilt. Neben den finanziellen Risiken wurde hierbei auch explizit auf die ethischen Fragen der Nutzung von Künstlicher Intelligenz eingegangen.

Fabian Müller, COO bei STATWORX, hält regelmäßig Vorträge an Hochschulen & Universitäten, um aktiv Aufklärung zum Thema künstliche Intelligenz zu betreiben.

Eine unserer Missionen bei STATWORX ist es, unser Wissen mit der Gesellschaft zu teilen. Vorträge an Hochschulen und Universitäten sind dabei eine tolle Möglichkeit, die Generation von morgen für Vorteile und Risiken von KI zu sensibilisieren. 

Hands-on Case Study

Als benotete Hausaufgabe haben sich die Studierenden dann in Gruppen aufgeteilt und einen selbst erdachten Data Science Use Case im Rahmen eines Unternehmens bewertet. Eine besonders gute Bearbeitung der Aufgabe ist dem Team von Christian Paul, Mark Kekel, Sebastian Schmidt und Moritz Brüggemann gelungen. Wie im folgenden Abstract beschrieben, widmete sich das Team der Überlegung des Einsatzes von Data Science bei der Vorhersage von Kundenbestellungen.

Consultant Paul Mora erklärt den Studierenden der DHBW den AI Project Canvas.

Abstract: Anwendung künstlicher Intelligenz im Kontext eines fiktiven Unternehmens

Die vorliegende Fallstudie gibt einen Überblick über die Möglichkeiten einer KI-gesteuerten Problemlösung anhand des fiktiven und aufstrebenden Unternehmens aus dem Bereich der Wintersportausrüster. Hierbei wurden vier unterschiedliche Use-Cases, die von der Nutzung einer KI profitieren, innerhalb einer Machbarkeits-Wirkungs-Matrix analysiert und das Konzept eines KI-gesteuerten After-Sales-Managements priorisiert.

Bezüglich des After-Sales-Managements wurden bis dato keine innovativen Methoden zur Verkaufsförderung entwickelt. Lediglich die Versendung von Gutscheinen, vier Wochen nach Erhalt der Bestellung, findet bereits Anwendung. Dies stellt hierbei jedoch keine adäquate Lösung für eine langfristige Kundenbindung dar. Mithilfe konzentrierter Rabatt- oder Gutscheinaktionen sollen Kunden zukünftig zum richtigen Zeitpunkt zu einem erneuten Kauf der Produkte angeregt werden. Der richtige Zeitpunkt, also der Fälligkeitstag, an dem der Bedarf des Kunden auftritt, soll hierbei unter der Verwendung von KI fortlaufend ermittelt werden. Unter dem Einsatz der KI erhofft sich das Management den Customer Journey nachvollziehen und diesen zukünftig vorhersagen zu können. Die absatzsteigernde Maßnahme basiert dabei auf dem von Daniel Kahnemann und Vernon L. Smith entwickeltem Konzept der deskriptiven Entscheidungstheorie, welche empirisch darstellt, wie Entscheidungen in der Realität getroffen werden. Die deskriptive Entscheidungstheorie definiert dabei Anreize zur richtigen Zeit, um gegenwärtige Bedürfnisse/ Bedarfe zu stillen, als einen zentralen Aspekt in der Entscheidungsfindung eines Entscheidungsträgers.

Das Data Sciences Model Canvas wurde hierbei als Werkzeug zur Strukturierung des Implementierungsprozesses der KI innerhalb des Unternehmens gewählt. Dabei soll das vorliegende Machine-Learning-Problem, unter dessen Verwendung zukünftige Bestelltermine der Kunden vorausgesagt werden sollen, mithilfe des sogenannten „Supervised Learnings“ bearbeitet werden. Übergreifend versucht der Algorithmus eine Hypothese zu finden, die möglichst zielsichere Annahmen trifft, wobei es sich unterkategorisiert um ein Regressionsproblem handelt. Richtig umgesetzt, werden Kunden bereits zum Zeitpunkt, an dem ihr Bedarf auftritt, mithilfe von konzentrierten Rabattaktionen zu einem Kauf angeregt. Dies ermöglicht unter anderem auch die Bindung hybrider Kunden, deren Nachfrageverhalten zwar wechselhaft ist, jedoch latent beeinflusst werden kann. Der Einsatz eines intelligenten After-Sales-Management-Systems ermöglicht somit eine langfristige Markt- und Kundenorientierung.

Interesse geweckt?

Den voll ausgearbeiteten Bericht sowie eine kurze und prägnante Management-Präsentation könnt Ihr euch nachfolgend herunterladen. Der Bericht zeigt, wie man Data Science effektiv innerhalb ein Unternehmen verwenden kann, um Kundenbeziehung zu stärken und Entscheidungen fundierter zu treffen. Des Weiteren präsentiert der Bericht drei weitere potentielle Einsatzmöglichkeiten von AI und wägt dessen Vorteile und Nachteile durch das AI Project Canvas ab.

Paul Mora Paul Mora

Erfahre mehr!

Als eines der führenden Unternehmen im Bereich Data Science, Machine Learning und KI begleiten wir Sie in die datengetriebene Zukunft. Erfahren Sie mehr über statworx und darüber, was uns antreibt.
Über uns