«Vertrauen schaffen durch menschenzentrierte KI»: Unter diesem Slogan hat die Europäische Kommission in der vergangenen Woche ihren Vorschlag zur Regulierung von künstlicher Intelligenz (KI-Regulierung) vorgestellt. Dieser historische Schritt positioniert Europa als ersten Kontinent, der KI und den Umgang mit personenbezogenen Daten einheitlich reguliert. Mithilfe dieser wegweisenden Regulierung soll Europa Standards zur Nutzung mit Daten und KI setzen – auch über die europäischen Grenzen hinaus. Dieser Schritt ist richtig. KI ist ein Katalysator der digitalen Transformation mit nachhaltigen Implikationen für Wirtschaft, Gesellschaft und Umwelt. Klare Spielregeln für den Einsatz dieser Technologie sind deshalb ein Muss. Damit kann sich Europa als progressiver Standort positionieren, der bereit ist für das digitale Zeitalter. In der aktuellen Form wirft der Vorschlag aber noch einige Fragen bei der praktischen Umsetzung auf. Abstriche bei der digitalen Wettbewerbsfähigkeit kann sich Europa im immer weiter klaffenden Wettbewerb mit Amerika und China nicht leisten.
Transparenz bei Risiken von KI
Zwei zentrale Vorschläge der KI-Regulierung zur Schaffung von Vertrauen
Um Vertrauen in KI-Produkte zu schaffen, setzt der Vorschlag zur KI-Regulierung auf zwei zentrale Ansätze: Risiken künstlicher Intelligenz überwachen und gleichzeitig ein «Ökosystem an KI-Exzellenz» kultivieren. Konkret beinhaltet der Vorschlag ein Verbot für die Anwendung von KI zu manipulativen und diskriminierenden Zwecken oder zur Beurteilung von Verhalten durch ein «Social Scoring System». Anwendungsfälle, die nicht in diese Kategorie fallen, sollen trotzdem auf Gefahren untersucht und auf einer vagen Risikoskala platziert werden. An Hochrisikoanwendungen werden besondere Anforderungen gestellt, deren Einhaltung sowohl vor als auch nach der Inbetriebnahme geprüft werden soll.
Dass anstelle einer Pauschalregulierung KI-Anwendungen auf Fallbasis beurteilt werden sollen, ist entscheidend. Noch letztes Jahr forderte die Europäische Kommission in einem Whitepaper die breite Einstufung aller Anwendungen in Geschäftsbereichen wie dem Gesundheitssektor oder der Transportindustrie. Diese flächendeckende Einstufung anhand definierter Branchen, unabhängig der eigentlichen Use Cases, wäre hinderlich und hätte für ganze Industrien auf dem Kontinent strukturelle Benachteiligungen bedeutet. Diese Fall-zu-Fall-Beurteilung erlaubt die agile und innovative Entwicklung von KI in allen Sektoren und unterstellt zudem alle Branchen den gleichen Standards zur Zulassung von risikoreichen Anwendungen.
Klare Definition von Risiken einer KI-Anwendung fehlt
Allerdings lässt der Vorschlag zur KI-Regulierung eine klare Definition von «hohen Risiken» vermissen. Da Entwickler selbst für die Beurteilung ihrer Anwendungen zuständig sind, ist eine klar definierte Skala zur Beurteilung von Risiken unabdingbar. Artikel 6 und 7 umschreiben zwar Risiken und geben Beispiele von «Hochrisikoanwendungen», ein Prozess zur Beurteilung von Risiken einer KI-Anwendung wird aber nicht definiert. Besonders Start-ups und kleinere Unternehmen, die unter KI-Entwicklern stark vertreten sind, sind auf klare Prozesse und Standards angewiesen, um gegenüber Großunternehmen mit entsprechenden Ressourcen nicht ins Hintertreffen zu geraten. Dazu sind praxisnahe Leitlinien zur Beurteilung von Risiken nötig.
Wird ein Use Case als «Hochrisikoanwendung» eingestuft, dann müssen verschiedene Anforderungen hinsichtlich Data Governance und Risk Management erfüllt sein, bevor das Produkt auf den Markt gebracht werden kann. So müssen verwendete Trainingsdatensätze nachweislich auf Verzerrungen und einseitige Tendenzen geprüft werden. Auch sollen die Modellarchitektur und Trainingsparameter dokumentiert werden. Nach dem Deployment muss ein Maß an menschlicher Aufsicht über getroffene Entscheidungen des Modells sichergestellt werden.
Verantwortlichkeit zu KI-Produkten ist ein hohes und wichtiges Ziel. Allerdings bleibt erneut die praktische Umsetzung dieser Anforderungen fraglich. Viele moderne KI-Systeme nutzen nicht länger den herkömmlichen Ansatz von Trainings- und Testdaten, sondern setzen bspw. durch Reinforcement Learning auf exploratives Training durch Feedback anstelle eines statischen, prüfbaren Datensatzes. Fortschritte in Explainable AI brechen zwar undurchschaubare Black-Box Modelle stetig weiter auf und ermöglichen immer mehr Rückschlüsse auf die Wichtigkeit von Variablen im Entscheidungsprozess eines Modelles, aber komplexe Modellarchitekturen und Trainingsprozesse vieler moderner neuronaler Netzwerke machen einzelne Entscheide eines solchen Modells für Menschen kaum sinnhaft rekonstruierbar.
Auch werden Anforderungen an die Genauigkeit der Prognosen oder Klassifizierungen gestellt. Dies stellt Entwickler vor besondere Herausforderungen, denn kein KI-System hat eine perfekte Genauigkeit. Dieser Anspruch besteht auch nicht, oftmals werden Fehlklassifikationen so eingeplant, dass sie für den jeweiligen Use Case möglichst wenig ins Gewicht fallen. Deshalb ist es unabdinglich, dass die Anforderungen an die Genauigkeit von Prognosen und Klassifikationen von Fall zu Fall in Anbetracht der Anwendung festgelegt werden und auf Pauschalwerte verzichtet wird.
KI-Exzellenz ermöglichen
Europa gerät ins Hintertreffen
Mit diesen Anforderungen will der Vorschlag zur KI-Regulierung durch Transparenz und Verantwortlichkeit Vertrauen in die Technologie wecken. Dies ist ein erster, richtiger Schritt in Richtung «KI-Exzellenz». Nebst Regulierung muss der KI-Standort Europa dazu aber auch für Entwickler und Investoren mehr Strahlkraft erhalten.
Laut einer jüngst veröffentlichten Studie des Center for Data Innovation gerät Europa sowohl gegenüber den Vereinigten Staaten als auch China im Anspruch um die weltweite Führungsposition in Sachen KI bereits ins Hintertreffen. So hat China mittlerweile in der Anzahl veröffentlichter Studien und Publikationen zu künstlicher Intelligenz Europa den Rang abgelaufen und die weltweite Führung übernommen. Auch ziehen europäische KI-Unternehmen erheblich weniger Investitionen an als ihre amerikanischen Pendants. Europäische KI-Unternehmen investieren weniger Geld in Forschung und Entwicklung und werden auch seltener aufgekauft als ihre amerikanischen Kollegen.
Ein Schritt in die richtige Richtung: Unterstützung von Forschung und Innovation
Der Vorschlag der EU-Kommission erkennt an, dass für Exzellenz auf dem europäischen Markt mehr Unterstützung für KI-Entwicklung benötigt wird und verspricht Regulatory Sandboxes, also rechtliche Spielräume zur Entwicklung und Testung innovativer KI-Produkte, und die Kofinanzierung von Forschungs- und Teststätten für KI. Dadurch sollen insbesondere Start-ups und kleinere Unternehmen wettbewerbsfähiger werden und für mehr europäische Innovationen sorgen.
Dies sind notwendige Schritte, um Europa auf den Weg zur KI-Exzellenz zu hieven, allerdings ist damit nicht genug getan. KI-Entwickler brauchen einfacheren Zugang zu Märkten außerhalb der EU, was auch das Vereinfachen von Datenströmen über Landesgrenzen bedeutet. Die Möglichkeiten zur Expansion in die USA und Zusammenarbeit mit Silicon Valley ist für die digitale Branche besonders wichtig, um der Vernetzung von digitalen Produkten und Services gerecht zu werden.
Was in dem Vorschlag zur KI-Regulierung gänzlich fehlt ist die Aufklärung über KI und deren Potenzial und Risiken außerhalb von Fachkreisen. Mit der zunehmenden Durchdringung aller Alltagsbereiche durch künstliche Intelligenz wird dies immer wichtiger, denn um Vertrauen in neue Technologien stärken zu können, müssen diese zuerst verstanden werden. Die Aufklärung sowohl über das Potenzial als auch die Grenzen von KI ist ein essenzieller Schritt, um künstliche Intelligenz zu entmystifizieren und dadurch Vertrauen in die Technologie zu schaffen.
Potenzial noch nicht ausgeschöpft
Mit diesem Vorschlag erkennt die Europäische Kommission an, dass Künstliche Intelligenz wegweisend ist für die Zukunft des europäischen Marktes. Leitlinien für eine Technologie dieser Tragweite sind wichtig – genauso wie die Förderung von Innovation. Damit diese Strategien auch Früchte tragen, muss ihre praktische Umsetzung auch für Start-ups und KMU zweifelsfrei umsetzbar sein. Das Potenzial zur KI-Exzellenz ist in Europa reichlich vorhanden. Mit klaren Spielregeln und Anreizen kann dies auch realisiert werden.