de
                    array(1) {
  ["de"]=>
  array(13) {
    ["code"]=>
    string(2) "de"
    ["id"]=>
    string(1) "3"
    ["native_name"]=>
    string(7) "Deutsch"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    string(1) "1"
    ["default_locale"]=>
    string(5) "de_DE"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "de"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(7) "Deutsch"
    ["url"]=>
    string(118) "https://www.statworx.com/content-hub/blog/ai-trends-report-2024-statworx-coo-fabian-mueller-zieht-eine-zwischenbilanz/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/de.png"
    ["language_code"]=>
    string(2) "de"
  }
}
                    
Kontakt
Content Hub
Blog Post

AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz

  • Expert:innen Tarik Ashry
  • Datum 05. September 2024
  • Thema Artificial IntelligenceData CultureData ScienceDeep LearningGenAIMachine Learning
  • Format Blog
  • Kategorie ManagementTechnology
AI Trends Report 2024: statworx COO Fabian Müller zieht eine Zwischenbilanz

2024 war ein aufregendes Jahr für die Künstliche Intelligenz. Nun steuern wir auf den Endspurt zu – höchste Zeit für eine Bestandsaufnahme.

Anfang des Jahres veröffentlichten wir unseren AI Trends Report 2024, in dem wir 12 steile Thesen formulierten, wie sich die KI-Landschaft 2024 entwickeln wird. In diesem Blogbeitrag werfen wir einen Blick darauf, wie sich unsere Prognosen bewährt haben. Dazu stellt Fabian Müller, COO von statworx, einige unserer Vorhersagen auf den Prüfstand.

Die Evolution der Datenkultur: Ein Wettbewerbsvorteil?

Unsere erste Prognose betraf die Verankerung von KI-Kompetenz und Datenkultur in Unternehmen. Fabian sagt zurecht: „Das ist ein No-Brainer. Unternehmen, die eine starke Datenkultur etabliert haben, verzeichnen überproportionale Fortschritte in der Nutzung von KI. Datenkultur wirkt wie Booster für den Fortschritt von KI.“

Der EU AI Act wird insbesondere durch Artikel 4 in naher Zukunft dazu beitragen, dass Unternehmen strukturiertes Wissen in bestimmten Rollen aufbauen werden. Der Wettbewerbsvorteil für Unternehmen, die Expertise und Kultur vereinen, ist also real und messbar. Das erfuhren wir auch auf unserem statworx Client Day aus erster Hand von unseren Kunden. Wer mehr zum Thema Data Culture wissen möchte, sollte unser Whitepaper zum Thema Data Culture lesen.

Die 4-Tage-Arbeitswoche: Ein Traum oder bald Realität?

Ein heiß diskutiertes Thema ist und bleibt die 4-Tage-Arbeitswoche, ermöglicht durch KI-Automatisierung. Fabian stellt klar, dass diese Entwicklung (noch) nicht primär durch KI vorangetrieben wird, sondern vor allem eine gesellschaftliche Diskussion ist: „KI kann zwar Effizienzsteigerungen ermöglichen, aber viel weiter ist generative KI noch nicht. Aktuell können wir spezifische Aufgaben automatisieren, aber um Arbeitszeit in großem Stil zu reduzieren, müsste KI ein ganzes Spektrum an Aufgaben übernehmen.“ Das ist auch der Grund, warum die Diskussion aktuell vor allem von der jüngeren Generation, die vornehmlich in der digitalen Arbeitswelt zuhause ist, geführt wird. Es bleibt abzuwarten, wann KI-Automatisierung auch darüber hinaus Arbeitszeitverkürzungen tatsächlich ermöglichen kann – und wie wir als Gesellschaft darüber entscheiden. Denn solche Veränderungen erfordern vor allem entsprechende politische Mehrheiten.

Auf dem Weg zur AGI: Omnimodale Modelle im Fokus

Die Vision einer Artificial General Intelligence (zu Deutsch: allgemeinen Künstlichen Intelligenz, abgekürzt AGI) scheint durch die Entwicklung von omnimodalen Modellen wie GPT-4o näher zu rücken. Die beeindruckenden Fortschritte von Claude 3.5 und dem Open-Source-Modell (bzw. Open-Weight) Llama 3.1 zeigen, dass die Entwicklung in Richtung AGI voranschreitet. Doch wie groß die nächsten Schritte werden, hängt für Fabian maßgeblich vom Zusammenspiel zweier miteinander zusammenhängender Faktoren ab: der Modellarchitektur und der Fähigkeit, KI-Systemen einen Körper bzw. eine physische Repräsentanz zu geben, das sogenannte Embodiment.

Was die Modellarchitektur betrifft, liegt der Schlüssel für Fabian in der Kombination von Symbolic AI und Connectionism (Deep Learning). Symbolic AI basiert auf expliziten logischen Regeln und Symbolen, die menschliche Wissensdarstellungen nachahmen. Denn auch wir Menschen kommen nicht ohne Vorwissen auf die Welt – wie Kahnemans Systeme 1 und 2 verdeutlichen. Symbolic AI war in den frühen Tagen der KI-Forschung populär. Immer wichtiger wird aber Deep Learning. Es setzt auf neuronale Netzwerke, die große Mengen an Daten verarbeiten und selbstständig Muster erkennen können. Es basiert auf der Annahme, dass Intelligenz durch die Kombination von Daten und Rechenleitung vollumfänglich erreicht werden kann.

Wenn es gelingt, diese beiden Architekturen sinnvoll zu verbinden, und ein solches KI-Modell in physische oder virtuelle Umgebungen einzubetten (Embodiment), können wir AGI tatsächlich bedeutend näherkommen, denkt Fabian. Denn das Gelingen von AGI beruht maßgeblich auf der These aus der neueren Kognitionswissenschaft, dass Bewusstsein einen Körper benötigt, also eine physische Interaktion voraussetzt.

Omnimodalität bezieht sich auf die Fähigkeit von KI-Modellen, mehrere Modalitäten – wie Text, Bild, Video und Audio – gleichzeitig zu verarbeiten und zu verstehen. Ein Beispiel dafür ist GPT-4o Vision, das sowohl Text als auch Bilddaten verarbeiten kann.

Embodiment hingegen bedeutet, dass KI-Modelle in einer physischen oder virtuellen Umgebung agieren und mit dieser interagieren können. Ein gutes Beispiel wäre ein Roboter, der nicht nur Sprache versteht, sondern auch physische Aufgaben ausführt.

Generative AI: Revolution in der Medienproduktion

Generative AI ist bereits dabei, die Medienproduktion zu revolutionieren. Ein beeindruckendes Beispiel lieferte Toys’R’Us, das mit OpenAIs Sora einen kompletten Werbespot produzierte. Links und rechts davon sprießen immer mehr generative KI-Tools aus dem Boden, wie zum Beispiel Lunar AI für Contenterstellung und DreamStudio für Bildgenerierung. Für den Film Civil War erstellte ein Marketingteam erstmals alle Filmplakate mit generativer KI – ein Vorbote für die ganze Filmbranche?

Was wir aktuell wissen, gibt noch keinen Anlass zur Annahme, dass wir demnächst den ersten komplett KI-generiert Film erwarten dürfen. Sora ist bisher nur eingeschränkt verfügbar und es ist unklar, wie weit fortgeschritten das Tool in seiner Entwicklung wirklich ist und wie viel manuelle Arbeit noch erforderlich ist. Doch für Fabian zeigt der Trend klar in eine Richtung: Obwohl KI derzeit noch wechselhafte Vorschläge macht, die vom Menschen nachbearbeitet werden müssen, wird sie in Zukunft zunehmend in der Lage sein, Inhalte automatisiert und mit höherer Qualität zu erstellen.

NVIDIA vs. Herausforderer: Ein ungleicher Kampf?

„Der Markt für GPUs bleibt spannend, doch NVIDIAs Dominanz ist weiterhin ungebrochen, das zeigt auch der Aktienkurs“, sagt Fabian. „Trotz Fortschritten von etablierten Unternehmen wie AMD und Start-ups wie Cerebras und Groq bleiben NVIDIAs Hardware und das damit verbundene Softwarestack und Ökosystem überlegen.“

Hinzu kommt, dass das Geschäftsmodell Chipentwicklung hohe Kapitalinvestitionen erfordert, was eine große Einstiegshürde für neue Akteure darstellt. Für die etablierten Konkurrenten sieht es nicht viel besser aus: Sie kämpfen damit, dass nahezu alle KI-Modelle auf NVIDIA-Hardware und NIVIDAs CUDA-Plattform entwickelt werden. Diese Modelle auf eine andere Hardware zu übertragen, ist technisch herausfordernd und zeitaufwändig.

CUDA (Compute Unified Device Architecture) ist eine Plattform für parallele Berechnungen und ein Programmiermodell bzw. Software-Framework, das von NVIDIA für allgemeine Berechnungen auf Grafikprozessoren (GPUs) entwickelt wurde.

SML vs. LLM – oder ganz weg von Transformern?

Leistungsfähige und kosteneffiziente kleine Sprachmodelle (Small Language Models, SLMs) wie Phi-3-mini (3.8B Tokens) laufen ihren großen Geschwistern in einigen Disziplinen schon den Rang ab. Das zeigt: Kleinere Modelle mit hochwertigen Daten können sehr erfolgreich sein. Trotzdem werden parallel dazu Modelle mit immer größeren Datenmengen gefüttert, wie z. B. Llama 3.1, das mit 405 Milliarden Parametern und 16,5 Billionen Tokens trainiert wurde.

Als Open-Source-Modell übertrifft Llama 3.1 in einigen Anwendungen sogar GPT-4, was wiederum zeigt: Der Abstand zwischen Open-Source- und proprietären Modellen ist derzeit so klein wie nie zuvor. Für Fabian liegt die Zukunft der Sprachmodelle deshalb in einer Kombination aus Qualität und Quantität. Denn, obwohl die Datenmenge sehr wichtig ist, liegt ein immer größeres Augenmerk auf der Datenbereinigung und -aufbereitung.

Denkbar ist aber auch, dass die Transformer-Technologie Modellarchitekturen ergänzt. Hier gibt es neue Lösungsansätze wie z. B. xLSTM, Scalable MatMul-free Language Modeling und Mamba. Diese Ansätze befinden sich jedoch noch in frühen Forschungsstadien. In welche Richtung es weitergeht, wird auch maßgeblich von der Frage abhängen: Wie gut wird GPT-5?

AI Act: Mehr Herausforderung als Chance

Aktuell ist es unklar, ob sich die Vorteile durch den AI Act wirklich einstellen. Aus ethischer Sicht sind die Vorteile für Verbraucher zu begrüßen. Der Schutz von Grundrechten sollte stets an oberster Stelle stehen. Aber ob sich die potenziellen Vorteile des AI Act auch für Unternehmen einstellen, muss die Zukunft zeigen. Denn derzeit sorgt das Gesetz eher für Unsicherheit: „Alle wissen, dass sie handeln müssen, aber kaum einer weiß genau wie“, sagt Fabian. „Das sehen wir auch bei unseren Kunden, mit denen wir aktuell daran arbeiten, Governance-Strukturen aufzubauen.”

In puncto Investitionen und Start-ups ist die Lage etwas klarer, weil sich der AI Act hier eher als hinderlich erweist. Europäische Start-ups haben Schwierigkeiten mit dem komplexen Gesetz, das je nach Risikostufe (von Spamfiltern über Chatbots bis Stellenvermittlung) unterschiedliche Anforderungen stellt und einige Anwendungsfälle verbietet. Die umfangreichen Definitionen könnten dazu führen, dass mehr als die geschätzten 5-15 % der Systeme als hochriskant eingestuft werden, was kleine Unternehmen vor erhebliche Kosten stellt.

Ironischerweise warnt nun sogar der Architekt des Vorschlags der Europäischen Kommission, Gabriele Mazzini, dass das Gesetz zu weit gefasst sein könnte und Unternehmen in Europa möglicherweise nicht genug Rechtssicherheit bietet. Aus unserer Sicht muss die EU deshalb die Investitionslücke zu den globalen Konkurrenten schließen und sicherstellen, dass die Regulierung Innovationen nicht behindert. Nur dann kann der AI Act das Vertrauen in europäische KI-Technologien stärken und als Qualitätsmerkmal fungieren.

KI-Agenten revolutionieren den Alltag…noch nicht

Was vor einem Jahr als Technologie noch unter dem Radar flog, feiert nun ein Comeback in neuer Qualität und Sichtbarkeit. Getrieben von den Fortschritten immer leistungsstärkerer LLMs entwickelt sich auch die Technologie für fortschrittliche persönliche Assistenz-Bots rasch weiter. Noch sind die Agents allerdings nicht so weit, dass sie zu einem wesentlichen Bestandteil des Arbeitsalltags geworden sind, konstatiert Fabian. Doch der Trend geht in die Richtung: Wir bei statworx nutzen KI-Assistenten intern und setzen auch für Kunden die ersten Projekte in dem Bereich um. Diese Systeme werden in den kommenden Jahren eine sehr große Rolle spielen.

Wenig überraschend erkennen auch immer mehr Start-ups die Chancen, die sich hier eröffnen, und dringen in den Markt ein. Und auch Sprachmodelle werden bereits explizit für den Umgang mit Tools trainiert, allen voran Llama 3.1. Sein Nachfolger Llama 4 soll noch stärker dafür optimiert sein. Doch der genaue Zeitrahmen und das Ausmaß der Entwicklung hin zu wirklich leistungsfähigen Agenten und Systemen von Agenten hängen von weiteren technologischen Fortschritten, regulatorischen Rahmenbedingungen und der gesellschaftlichen Akzeptanz ab.

Können wir ein Zwischenfazit ziehen? Jein…

Unser AI Trends Report zeigt, dass wir ein gutes Gespür für die bedeutenden Themen und Fragen hatten, die uns alle dieses Jahr beschäftigen würden. Wie gut unsere Prognosen waren, müssen wir an dieser Stelle offenlassen. Fabians häufigste Antwort auf die Frage „Stimmt diese These?” lautete nämlich „Jein“ – gefolgt von einer vorsichtigen Abwägung. Klar ist nur: Die Dynamik der Branche ist hoch.

An den Börsen drängt sich immer stärker die Frage auf, ob der Hype schon vorbei und KI zu einer Blase angeschwollen ist. Expert:innen sind sich uneins, denn trotz der jüngsten Turbulenzen gilt KI als neue Basistechnologie, ähnlich wie das Internet Anfang der 2000er Jahre. Damals profitierten kluge Unternehmer, die gegen den Trend an der Börse an die Technologie glaubten. Diese Unternehmen – Amazon, Google, Facebook und Nvidia – gehören heute zu den wertvollsten der Welt. Wenn KI-Aktienkurse also fallen und nicht überall kurzfristige Erfolge eintreten, zeigt der Blick in die Vergangenheit, dass es für den Standort Europa gefährlich sein kann, voreilig das Ende des KI-Hypes auszurufen.

Wir bleiben deshalb weiter gespannt, welche Überraschungen die nächsten Monate noch für uns bereithalten und laden euch ein, mit uns zu diskutieren! Tarik Ashry

Mehr erfahren!

Als eines der führenden Beratungs- und Entwicklungs­unternehmen für Data Science und KI begleiten wir Unternehmen in die datengetriebene Zukunft. Erfahre mehr über statworx und darüber, was uns antreibt.
Über uns