Back to all Blog Posts

Testing REST APIs With Newman

  • Coding
  • Data Engineering
  • Data Science
26. February 2020
·

Team statworx

REST APIs have become a quasi-standard, be it to provide an interface to your application processes, be by setting up a flexible microservice architecture. Sooner or later, you might ask yourself what a proper testing schema would look like and which tools can support you. Some time ago, we at statworx asked this ourselves. A toolset that helps us with this task is Newman and Postman, which I will present to you in this blog post.

Many of you, who are regularly using and developing REST, might already be quite familiar with Postman. It’s a handy and comfortable desktop tool that comes with some excellent features (see below). Newman, instead, is a command-line agent that runs the previously defined requests. Because of its lean interface, it can be used in several situations, for instance, it can be easily integrated into testing stages of Pipelines.

In the following, I will explain how these siblings can be used to implement a neat testing environment. We start with Postman’s feature sets, then move on to the ability to interact with Newman. We will further have a look at a testing schema, touching some test cases, and lastly, integrate it into a Jenkins pipeline.

About Postman

Postman is a convenient desktop tool handling REST request. Furthermore, Postman gives you the possibility to define test cases (in JavaScript), has a feature to switch environments, and provides you with Pre-Request steps to set up the setting before your calls. In the following, I will give you examples of some interesting features.

Collection and Requests

Requests are the basic unit in Postman, and everything else spins around them. As I said previously, Postman’s GUI provides you with a comfortable way to define these: request method can be picked from a drop-down list, header information is presented clearly, there is a helper for authorization and many more.

You should have at least one collection per REST interface defined to bundle your requests. At the very end of the definition process, collections can be exported into JSON format. This result will, later on, be exploited for Newman.

Environments

Postman also implements the concept of environment variables. This means: Depending on where your requests are fired from, the variables adapt. The API’s hostname is a good example that should be kept variable: In the development stage, it may be just your localhost but could be different in a dockerized environment.

The syntax of environment variables is double-curly brackets. If you want to use the hostname variable hostname put it like this: {{ hostname }}

Like for collections, environments can be exported into JSON files. We should keep this in mind when we move to Newman.

Tests

Each API request in Postman should come along with at least one test. I propose the following list as an orientation on what to test:

  • the status code: Check the status code according to your expectation: regular GET requests are supposed to return 200 OK, POST requests 201 Created if successful. On the other hand, authorization should be tested as well as invalid client requests which are supposed to return 40x. – See below a POST request test:
pm.test("Successful POST request", function () {
     pm.expect(pm.response.code).to.be.oneOf([201,202]);
 });

  • whether data is returned Test if the response has any data as a first approximation
  • the schema of returned data Test if the structure of the request data fits the expectations: non-nullable fields, data types, names of properties. Find below an example of a schema validation:
pm.test("Response has correct schema", function () {
    var schema = {"type":"object",
                  "properties":{
                      "access_token":{"type":"string"},
                      "created_on":{"type":"string"},
                      "expires_seconds":{"type":"number"}
                  }};
    var jsonData = pm.response.json();
    pm.expect(tv4.validate(jsonData,schema)).to.be.true;
});

  • values of returned data: Check if the values of the response data are sound; for non-negative values:
pm.test("Expires non negative", function() {
    pm.expect(pm.response.json().expires_seconds).to.be.above(0);
})

  • Header values Check the header of the response if useful relevant is stored there.

All tests have to be written in JavaScript. Postman ships with its own library and tv4 for schema validation.

Below you find a complete running test:

Introduction to Newman

As mentioned before, Newman acts as an executor of what was defined in Postman. To generate results, Newman uses reporters. Reporters can be the command line interface itself, but also known standards as JUnit can be found. The simplest way to install newman is via NPM (Node package manager). There are ready to use docker images of NodeJS on DockerHub. Install the package via npm install -g newman.

There are two ways to call Newman: command-line interface and within JS code. We will only focus on the first.

Calling the CLI

To run a predefined test collections use the command newman run. Please see the example below:

newman run
            --reporters cli,junit
            --reporter-junit-export /test/out/report.xml
            -e /test/env/auth_jwt-docker.pmenv.json
            /test/src/auth_jwt-test.pmc.json

Let us take a closer look: Recall that we have previously exported the collection and the environment from Postman. The environment can be attached with the -e option. Moreover, two reporters were specified: the cli itself which prints into the terminal and junit which additional shall export a report to the file report.xml

The CLI reporter prints the following (Note that the first three test cases are those from the test schema proposal):

→ jwt-new-token
  POST http://tp_auth_jwt:5000/new-token/bot123 [201 CREATED, 523B, 42ms]
  ✓  Successful POST request
  ✓  Response has correct schema
  ✓  Expires non negative

→ jwt-auth
  POST http://tp_auth_jwt:5000/new-token/test [201 CREATED, 521B, 11ms]
  GET http://tp_auth_jwt:5000/auth [200 OK, 176B, 9ms]
  ✓  Status code is 200
  ✓  Login name is correct

→ jwt-auth-no-token
  GET http://tp_auth_jwt:5000/auth [401 UNAUTHORIZED, 201B, 9ms]
  ✓  Status is 401 or 403

→ jwt-auth-bad-token
  GET http://tp_auth_jwt:5000/auth [403 FORBIDDEN, 166B, 6ms]
  ✓  Status is 401 or 403

Integration into Jenkins

Newman functionality can now be integrated into (almost?) any Pipeline tool. For Jenkins, we create a docker image based on NodeJS and with Newman installed. Next, we either pack or mount both the environment and the collection file into the docker container. When running the container, we use Newman as a command-line tool, just as we did before. To use this in a test stage of a Pipeline, we have to make sure that the REST API is actually running when Newman is executed.

In the following example, the functionalities were defined as targets of a Makefile:

  • run to run the REST API with all dependencies
  • test to run Newman container which itself runs the testing collections
  • rm to stop and remove the REST API

After the API has been tested the report from JUnit is digested by Jenkins with the command junit <report>

See below a Pipeline snippet of a test run:

node{
       stage('Test'){
            try{
                sh "cd docker && make run"
                sh "sleep 5"
                sh "cd docker && make test"
                junit "source/test/out/report.xml"

            } catch (Exception e){
                    echo e
            } finally {
                    sh "cd docker && make rm"
            }
        }
}

Summary

Now it’s time to code tests for your REST API. Please also try to integrate it into your build-test cycle and into your automation pipeline because automation and defined processes are crucial to delivering reliable code and packages. I hope with this blog post, you now have a better understanding of how Postman and Newman can be used to implement a test framework for REST APIs. Postman was used as a definition tool, whereas Newman was the runner of these definitions. Because of his nature, we have also seen that Newman is the tool for your build pipeline.

Happy coding!

We’re hiring!

Data Engineering is your jam and you’re looking for a job? We’re currently looking for Junior Consultants and Consultants in Data Engineering. Check the requirements and benefits of working with us on our career site. We’re looking forward to your application!

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
05. February 2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15. November 2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
06. November 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
05. September 2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
05. August 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
31. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
24. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
04. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
10. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
13. June 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
10. April 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
21. February 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
08. February 2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
25. October 2023
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
27. September 2023
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
30. August 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
14. June 2023
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. May 2023
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
17. May 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
11. May 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
03. May 2023
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
26. April 2023
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
19. April 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
17. March 2023
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
16. March 2023
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
08. March 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
02. March 2023
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
16. February 2023
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
22. December 2022
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
30. November 2022
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
26. October 2022
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. October 2022
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
29. September 2022
Read more
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
29. September 2022
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
14. September 2022
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
18. August 2022
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
04. August 2022
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
21. July 2022
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
13. July 2022
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
28. June 2022
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
23. June 2022
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. May 2022
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
08. March 2022
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
02. February 2022
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
06. January 2022
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
25. November 2021
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
22. September 2021
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
03. September 2021
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
25. August 2021
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
13. August 2021
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
29. July 2021
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
30. June 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
19. May 2021
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
12. May 2021
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
05. May 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
05. May 2021
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
28. April 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
31. March 2021
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
24. March 2021
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
23. Dezember 2020
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 Practical Examples of NLP Use Cases
Team statworx
12. November 2020
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
11. November 2020
Read more
  • Data Science
  • Deep Learning
New Trends in Natural Language Processing – How NLP Becomes Suitable for the Mass-Market
Dominique Lade
29. October 2020
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
22. October 2020
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
10. October 2020
Read more
  • Coding
  • Data Science
  • Deep Learning
Fine-tuning Tesseract OCR for German Invoices
Team statworx
08. October 2020
Read more
  • Artificial Intelligence
  • Machine Learning
Whitepaper: A Maturity Model for Artificial Intelligence
Team statworx
06. October 2020
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
How to Provide Machine Learning Models With the Help Of Docker Containers
Thomas Alcock
01. October 2020
Read more
  • Recap
  • statworx
STATWORX 2.0 – Opening of the New Headquarters in Frankfurt
Julius Heinz
24. September 2020
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
29. July 2020
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15. July 2020
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
14. July 2020
Read more
  • Data Engineering
  • R
  • Tutorial
How To Dockerize ShinyApps
Team statworx
15. May 2020
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
01. April 2020
Read more
  • Frontend
  • Python
  • Tutorial
How To Build A Dashboard In Python – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. March 2020
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
19. March 2020
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
04. March 2020
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
19. Febuary 2020
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
14. Febuary 2020
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
05. February 2020
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
29.01.2020
Read more
  • Data Engineering
  • R
  • Tutorial
How To Create REST APIs With R Plumber
Stephan Emmer
23. January 2020
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
20. Dezember 2019
Read more
  • Artificial Intelligence
  • Deep Learning
Deep Learning Overview and Getting Started
Team statworx
04. December 2019
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
21. November 2019
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
06. November 2019
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
30. October 2019
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
18. October 2019
Read more
  • Data Science
  • R
  • Statistics & Methods
Evaluating Model Performance by Building Cross-Validation from Scratch
Team statworx
02. October 2019
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
25. September 2019
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
11. September 2019
Read more
  • Machine Learning
  • R
  • Statistics & Methods
What the Mape Is FALSELY Blamed For, Its TRUE Weaknesses and BETTER Alternatives!
Team statworx
16. August 2019
Read more
  • Coding
  • Python
Web Scraping 101 in Python with Requests & BeautifulSoup
Team statworx
31. July 2019
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
19. July 2019
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
21. June 2019
Read more
  • Data Visualization
  • R
Interactive Network Visualization with R
Team statworx
12. June 2019
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
29. May 2019
Read more
This is some text inside of a div block.
This is some text inside of a div block.