Back to all Blog Posts

Break the Bias in AI

  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
08. March 2022
·

Team statworx

Whether deliberate or unconscious, bias in our society makes it difficult to create a gender-equal world free of stereotypes and discrimination. Unfortunately, this gender bias creeps into AI technologies, which are rapidly advancing in all aspects of our daily lives and will transform our society as we have never seen before. Therefore, creating fair and unbiased AI systems is imperative for a diverse, equitable, and inclusive future. It is crucial not only to be aware of this issue but that we act now, before these technologies reinforce our gender bias even more, including in areas of our lives where we have already eliminated them.

Solving starts with understanding: To work on solutions to eliminate gender bias and all other forms of bias in AI, we first need to understand what it is and where it comes from. Therefore, in the following, I will first introduce some examples of gender-biased AI technologies and then give you a structured overview of the different reasons for bias in AI. I will present the actions needed towards fairer and more unbiased AI systems in a second step.

Sexist AI

Gender bias in AI has many faces and has severe implications for women’s equality. While Youtube shows my single friend (male, 28) advertisements for the latest technical inventions or the newest car models, I, also single and 28, have to endure advertisements for fertility or pregnancy tests. But AI is not only used to make decisions about which products we buy or which series we want to watch next. AI systems are also being used to decide whether or not you get a job interview, how much you pay for your car insurance, how good your credit score is, or even what medical treatment you will get. And this is where bias in such systems really starts to become dangerous.

In 2015, for example, Amazon’s recruiting tool falsely learned that men are better programmers than women, thus, not rating candidates for software developer jobs and other technical posts in a gender-neutral way.

In 2019, a couple applied for the same credit card. Although the wife had a slightly better credit score and the same income, expenses, and debts as her husband, the credit card company set her credit card limit much lower, which the customer service of the credit card company could not explain.

If these sexist decisions were made by humans, we would be outraged. Fortunately, there are laws and regulations against sexist behavior for us humans. Still, AI has somehow become above the law because an assumably rational machine made the decision. So, how can an assumably rational machine become biased, prejudiced, and racist? There are three interlinked reasons for bias in AI: data, models, and community.

Data is Destiny

First, data is a mirror of our society, with all our values, assumptions, and, unfortunately, also biases. There is no such thing as neutral or raw data. Data is always generated, measured, and collected by humans. Data has always been produced through cultural operations and shaped into cultural categories. For example, most demographic data is labeled based on simplified, binary female-male categories. When gender classification conflates gender in this way, data is unable to show gender fluidity and one’s gender identity. Also, race is a social construct, a classification system invented by us humans a long time ago to define physical differences between people, which is still present in data.

The underlying mathematical algorithm in AI systems is not sexist itself. AI learns from data with all its potential gender biases. For example, suppose a face recognition model has never seen a transgender or non-binary person because there was no such picture in the data set. In that case, it will not correctly classify a transgender or non-binary person (selection bias).

Or, as in the case of Google translate, the phrase “eine Ärztin” (a female doctor) is consistently translated into the masculine form in gender-inflected languages because the AI system has been trained on thousands of online texts where the male form of “doctor” was more prevalent due to historical and social circumstances (historical bias). According to Invisible Women, there is a big gender gap in Big Data in general, to the detriment of women. So if we do not pay attention to what data we feed these algorithms, they will take over the gender gap in the data, leading to serious discrimination of women.

Models need Education

Second, our AI models are unfortunately not smart enough to overcome the biases in the data. Because current AI models only analyze correlations and not causal structures, they blindly learn what is in the data. These algorithms inherent a systematical structural conservatism, as they are designed to reproduce given patterns in the data.

To illustrate this, I will use a fictional and very simplified example: Imagine a very stereotypical data set with many pictures of women in kitchens and men in cars. Based on these pictures, an image classification algorithm has to learn to predict the gender of a person in a picture. Due to the data selection, there is a high correlation between kitchens and women and between cars and men in the data set – a higher correlation than between some characteristic gender features and the respective gender. As the model cannot identify causal structures (what are gender-specific features), it thus falsely learns that having a kitchen in the picture also implies having women in the picture and the same for cars and men. As a result, if there’s a woman in a car in some image, the AI would identify the person as a man and vice versa.

However, this is not the only reason AI systems cannot overcome bias in data. It is also because we do not “tell” the systems that they should watch out for this. AI algorithms learn by optimizing a certain objective or goal defined by the developers. Usually, this performance measure is an overall accuracy metric, not including any ethical or fairness constraints. It is as if a child was to learn to get as much money as possible without any additional constraints such as suffering consequences from stealing, exploiting, or deceiving. If we want AI systems to learn that gender bias is wrong, we have to incorporate this into their training and performance evaluation.

Community lacks Diversity

Last, it is the developing community who directly or indirectly, consciously or subconsciously introduces their own gender and other biases into AI technologies. They choose the data, define the optimization goal, and shape the usage of AI.

While there may be malicious intent in some cases, I would argue that developers often bring their own biases into AI systems at an unconscious level. We all suffer from unconscious biases, that is, unconscious errors in thinking that arise from problems related to memory, attention, and other mental mistakes. In other words, these biases result from the effort to simplify the incredibly complex world in which we live.

For example, it is easier for our brain to apply stereotypic thinking, that is, perceiving ideas about a person based on what people from a similar group might “typically “be like (e.g., a man is more suited to a CEO position) than to gather all the information to fully understand a person and their characteristics. Or, according to the affinity bias, we like people most who look and think like us, which is also a simplified way of understanding and categorizing the people around us.

We all have such unconscious biases, and since we are all different people, these biases vary from person to person. However, since the current community of AI developers comprises over 80% white cis-men, the values, ideas, and biases creeping into AI systems are very homogeneous and thus literally narrow-minded. Starting with the definition of AI, the founding fathers of AI back in 1956 were all white male engineers, a very homogeneous group of people, which led to a narrow idea of what intelligence is, namely the ability to win games such as chess. However, from psychology, we know that there are a lot of different kinds of intelligence, such as emotional or social intelligence. Still, today, if a model is developed and reviewed by a very homogenous group of people, without special attention and processes, they will not be able to identify discrimination who are different from themselves due to unconscious biases. Indeed, this homogenous community tends to be the group of people who barely suffer from bias in AI.

Just imagine if all the children in the world were raised and educated by 30-year-old white cis-men. That is what our AI looks like today. It is designed, developed, and evaluated by a very homogenous group, thus, passing on a one-sided perspective on values, norms, and ideas. Developers are at the core of this. They are teaching AI what is right or wrong, what is good or bad.

Break the Bias in Society

So, a crucial step towards fair and unbiased AI is a diverse and inclusive AI development community. Meanwhile, there are some technical solutions to the mentioned data and model bias problems (e.g., data diversification or causal modeling). Still, all these solutions are useless if the developers fail to think about bias problems in the first place. Diverse people can better check each other’s blindspots, each other’s biases. Many studies show that diversity in data science teams is critical in reducing bias in AI.

Furthermore, we must educate our society on AI, its risks, and its chances. We need to rethink and restructure the education of AI developers, as they need as much ethical knowledge as technical knowledge to develop fair and unbiased AI systems. We need to educate the broad population that we all can also become part of this massive transformation through AI to contribute our ideas and values to the design and development of these systems.

In the end, if we want to break the bias in AI, we need to break the bias in our society. Diversity is the solution to fair and unbiased AI, not only in AI developing teams but across our whole society. AI is made by humans, by us, by our society. Our society with its structures brings bias in AI: through the data we produce, the goals we expect the machines to achieve and the community developing these systems. At its core, bias in AI is not a technical problem – it is a social one.

Positive Reinforcement of AI

Finally, we need to ask ourselves: do we want AI reflecting society as it is today or a more equal society of tomorrow? Suppose we are using machine learning models to replicate the world as it is today. In that case, we are not going to make any social progress. If we fail to take action, we might lose some social progress, such as more gender equality, as AI amplifies and reinforces bias back into our lives. AI is supposed to be forward-looking. But at the same time, it is based on data, and data reflects our history and present. So, as much as we need to break the bias in society to break the bias in AI systems, we need unbiased AI systems for social progress in our world.

Having said all that, I am hopeful and optimistic. Through this amplification effect, AI has raised awareness of old fairness and discrimination issues in our society on a much broader scale. Bias in AI shows us some of the most pressing societal challenges. Ethical and philosophical questions become ever more important. And because AI has this reinforcement effect on society, we can also use it for the positive. We can use this technology for good. If we all work together, it is our chance to remake the world into a much more diverse, inclusive, and equal place.

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
05. February 2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15. November 2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
06. November 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
05. September 2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
05. August 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
31. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
24. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
04. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
10. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
13. June 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
10. April 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
21. February 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
08. February 2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
25. October 2023
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
27. September 2023
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
30. August 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
14. June 2023
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. May 2023
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
17. May 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
11. May 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
03. May 2023
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
26. April 2023
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
19. April 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
17. March 2023
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
16. March 2023
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
08. March 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
02. March 2023
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
16. February 2023
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
22. December 2022
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
30. November 2022
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
26. October 2022
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. October 2022
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
29. September 2022
Read more
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
29. September 2022
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
14. September 2022
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
18. August 2022
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
04. August 2022
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
21. July 2022
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
13. July 2022
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
28. June 2022
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
23. June 2022
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. May 2022
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
02. February 2022
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
06. January 2022
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
25. November 2021
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
22. September 2021
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
03. September 2021
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
25. August 2021
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
13. August 2021
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
29. July 2021
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
30. June 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
19. May 2021
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
12. May 2021
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
05. May 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
05. May 2021
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
28. April 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
31. March 2021
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
24. March 2021
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
23. Dezember 2020
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 Practical Examples of NLP Use Cases
Team statworx
12. November 2020
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
11. November 2020
Read more
  • Data Science
  • Deep Learning
New Trends in Natural Language Processing – How NLP Becomes Suitable for the Mass-Market
Dominique Lade
29. October 2020
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
22. October 2020
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
10. October 2020
Read more
  • Coding
  • Data Science
  • Deep Learning
Fine-tuning Tesseract OCR for German Invoices
Team statworx
08. October 2020
Read more
  • Artificial Intelligence
  • Machine Learning
Whitepaper: A Maturity Model for Artificial Intelligence
Team statworx
06. October 2020
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
How to Provide Machine Learning Models With the Help Of Docker Containers
Thomas Alcock
01. October 2020
Read more
  • Recap
  • statworx
STATWORX 2.0 – Opening of the New Headquarters in Frankfurt
Julius Heinz
24. September 2020
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
29. July 2020
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15. July 2020
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
14. July 2020
Read more
  • Data Engineering
  • R
  • Tutorial
How To Dockerize ShinyApps
Team statworx
15. May 2020
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
01. April 2020
Read more
  • Frontend
  • Python
  • Tutorial
How To Build A Dashboard In Python – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. March 2020
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
19. March 2020
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
04. March 2020
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
26. February 2020
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
19. Febuary 2020
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
14. Febuary 2020
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
05. February 2020
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
29.01.2020
Read more
  • Data Engineering
  • R
  • Tutorial
How To Create REST APIs With R Plumber
Stephan Emmer
23. January 2020
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
20. Dezember 2019
Read more
  • Artificial Intelligence
  • Deep Learning
Deep Learning Overview and Getting Started
Team statworx
04. December 2019
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
21. November 2019
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
06. November 2019
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
30. October 2019
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
18. October 2019
Read more
  • Data Science
  • R
  • Statistics & Methods
Evaluating Model Performance by Building Cross-Validation from Scratch
Team statworx
02. October 2019
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
25. September 2019
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
11. September 2019
Read more
  • Machine Learning
  • R
  • Statistics & Methods
What the Mape Is FALSELY Blamed For, Its TRUE Weaknesses and BETTER Alternatives!
Team statworx
16. August 2019
Read more
  • Coding
  • Python
Web Scraping 101 in Python with Requests & BeautifulSoup
Team statworx
31. July 2019
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
19. July 2019
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
21. June 2019
Read more
  • Data Visualization
  • R
Interactive Network Visualization with R
Team statworx
12. June 2019
Read more
  • Deep Learning
  • Python
  • Tutorial
Using Reinforcement Learning to play Super Mario Bros on NES using TensorFlow
Sebastian Heinz
29. May 2019
Read more
This is some text inside of a div block.
This is some text inside of a div block.