Back to all Blog Posts

Master R shiny: One trick to build maintainable and scaleable event chains

  • Coding
  • R
02. November 2018
·

Team statworx

Introduction

Writing appealing interactive web applications – one of STATWORX’s many competencies – is easy with R shiny. Just a few lines of code in one R script create the whole logic you need to let the whole magic of shiny happen. It is so simple that you can make a hello world app in a heartbeat, like so.

library(shiny)
ui <- fluidPage(
 "Hello, World!"
)
server <- function(input, output, session) { }
shinyApp(ui, server)

Today I am going to show you one way you can use native shiny syntax to modularize pieces of your code in a way that makes your code basis easily maintainable and extendable. Since I assume you are already familiar with shiny, I’ll skip the intro wading pool example and go right to the high-dive.

What are event chains?

An event chain describes the relationship between events and tasks and how the events affect each other. In some cases, you may want to have an app that takes user input and performs actions based on the nature of the input, potentially asking for more information along the way. In such a case, chances are you want to implement an event chain. You could immediately start hacking some crude solution to your problem, but you may risk creating hardly comprehensible code. Furthermore, imagine that requirements on your event chain suddenly change. In this case, it is important to modularize your event chain so that it remains maintainable and adaptable.

Example: the friend logger

So, let me illustrate how to build a modularized event chain. Imagine you are pedantic about time and take appointments seriously. Quite to the detriment of your so-called “friends”, you make no exceptions. Every time a friend is too late, you suffer so bad you have decided to use a shiny app to keep score of your friends’ visits in order to determine how reliable they are (you pathetic you!). Requirements for the app’s usage are simple, as shown in the graph below.

friends

You want to compare the expected arrival time of your friend with his actual arrival time. If his delay is above a certain threshold (e.g. 5 minutes), you want to protocol his excuse for being late. If you deem his excuse as being acceptable, you neglect his sin (but still keep protocol!). If he is punctual, he receives a bonus point. If he arrives too late and his excuse is not acceptable, he receives a minus point. In any case, you log his visit (how low can you get?). To keep things more visual, here is a sketch of the app’s UI including the event sequence when a friend is being late.

friends-app-view

Now, it is time to implement the app.

Event chain architecture in R Shiny

It takes two ingredients to implement event chains:

  1. triggers that are stored in reactiveValues()
  2. observers (observeEvent()) that are triggered and carry out the actual checks and other computations

The actual trick is to find the appropriate number of observeEvent()s so that each step in the event chain is covered by one observeEvent and therefore no code redundancies are created. Using the example above, we have three possible sequences of events:

  1. Friend is too late and has a good excuse
  2. Friend is too late and doesn’t have a good excuse
  3. Friend is not too late

In all three cases, we need to log a friend’s visit, so it definitely makes sense to put the visit logging part in one observeEvent and to call that observer at the end of each of the sequences above. Drawing an event chain diagram comes in especially handy here, as it supports a suitable architectural design choice. I used draw.io for the task.

For the app, I used one reactiveValues-object in which I put all triggers (you can find the whole app code on GitHub).

shinyServer(function(input, output, session) {
 
 # Data
 rv <- reactiveValues(
   ...
   # Triggers
   ask_for_reason = TRUE,
   change_friend_score = TRUE,
   save_visit = TRUE,
   error = FALSE
 )
 ...
})

I use boolean values for the triggers so that I only have to negate them if I want to change their value (a <- !a). Using integers would also work, but I find the flip-trick nicer. Let’s look at the part of the chain where a friend’s punctuality is checked in more detail. The module that checks punctuality also reads in the data. Depending on the input, it either calls the “Ask-for-a-reason”-module or directly calls the visit logger.

# Submit friend data ----
observeEvent(input(dollar sign)submit, {
 # Collect data
 ...
   
 is_delayed <- difftime(actual_time, expected_time, units = "mins") > input(dollar sign)acceptance
 if (is_delayed) {
   # Friend is delayed --> trigger Ask-for-reason-module
   rv(dollar sign)ask_for_reason <- isolate(!rv(dollar sign)ask_for_reason)
   return()
 }
 # Friend seems punctual --> Add a point to score list :)
 friend_data <- set_data(friend_data, score = 1)
 # Trigger visit logger
 rv(dollar sign)change_friend_score <- isolate(!rv(dollar sign)change_friend_score)
})

As you can see, once you have drawn the event chain it is quite intuitive to translate it into shiny code. If the friend is punctual, we set his score to one (score will be added in the visit logger module) and call the visit logger module, which looks like this:

# Change friend score ----
observeEvent(rv(dollar sign)change_friend_score, ignoreInit = TRUE, {
 rv(dollar sign)friend_score[friend_score(dollar sign)name == friend_data(dollar sign)name, "score"] <-
   isolate(rv(dollar sign)friend_score[friend_score(dollar sign)name == friend_data(dollar sign)name, "score"]) +
   friend_data(dollar sign)score
 # Make change permanent
 saveRDS(rv(dollar sign)friend_score, "data/friend_score.RDS")
 rv(dollar sign)save_visit <- isolate(!rv(dollar sign)save_visit)
})

Note that the rv(dollar sign)save_visit trigger simply calls an observer that adds another row to the friend visit table and does some cleaning.

So now let’s make a little test run with the ready product. For your app to work, you of course have to first create an initial dataset with your friends and their initial scores in order to know who you are keeping a record of. In the example below, we have four friends: John, Emily, Olivia, and Ethan. You can see their scores in the lower-left corner. Past visits are logged and displayed in the upper right corner.

app-ui

John wants to hang out with us to play some brutal video games, and for no obvious reason, we made an appointment at 9 am. However, John shows up 7 (!!!) minutes late. Enough is enough. We enter his misdeed.

john-entered

It exceeds the threshold, so we are, as expected, prompted to enter the reason.

enter-reason

When we asked John to justify himself, he just shrugged his shoulders. How dare he?! That’s a minus point…

Extend our event chain

Even though you are hurt because of John’s unreliability, you are quite happy with your app. Yet, things could be better! For example, every time you misspell a friend in the name field when protocoling a visit, the app crashes. Your app could use some (additional) sanity checks. A perfect use case for showing the flexibility of your architecture. After a few months of deep reflection, you came up with a new event flow graph that takes care of wrong inputs.

friends-with-error

You figured two spots where the app ought to be stabilized. First, you want to throw an error to the user if a friend doesn’t exist (without stopping the app). Second, you require yourself to enter a reason (we all know how sloppy our future self can be from time to time).

With the already chosen modularized structure, it is easy to incorporate these checks. You simply need to add one more trigger (rv(dollar sign)error) and one global container that stores the error information.

# Error handler
error <- reactiveValues(
 title = "",
 message = ""
)

If you for example want to check whether an entered name exists in your database, all you have to do is to add a few lines of code at the beginning of the observer where a friend’s punctuality is checked.

# Submit friend data ----
observeEvent(input(dollar sign)submit, {
 # Friend exists?
 if (!input(dollar sign)name %in% rv(dollar sign)friend_score(dollar sign)name) {
   error(dollar sign)title <- "%s not found" %>% sprintf(., input(dollar sign)name)
   error(dollar sign)message <- h1("404")
   rv(dollar sign)error <- isolate(!rv(dollar sign)error)
   return()
 }
 ...
})

If the name doesn’t match any of your friends’ names, you trigger an error handler module whose only purpose is to show an error message:

# Error handling ----
observeEvent(rv(dollar sign)error, ignoreInit = TRUE, {
 showModal(modalDialog(    
   title = error(dollar sign)title,
   error(dollar sign)message,
   footer = actionButton("exit", "Ok", class = "btn-primary")
 ))
})

The nice thing is that you can use this module to handle any errors, no matter which sanity checks have caused them.

So if we go back to the app now and enter a name that doesn’t exist (like Tobias), we get the following error message:

friend-not-found

Furthermore, if we miss entering a reason when being asked for one, we get a passive-aggressive reminder:

no-reason-give

You are welcome! So would you excuse me now? I have some visits to protocol…  

Linkedin Logo
Marcel Plaschke
Head of Strategy, Sales & Marketing
schedule a consultation
Zugehörige Leistungen
No items found.

More Blog Posts

  • Artificial Intelligence
AI Trends Report 2025: All 16 Trends at a Glance
Tarik Ashry
05. February 2025
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
Explainable AI in practice: Finding the right method to open the Black Box
Jonas Wacker
15. November 2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
How a CustomGPT Enhances Efficiency and Creativity at hagebau
Tarik Ashry
06. November 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Data Science
  • Deep Learning
  • GenAI
  • Machine Learning
AI Trends Report 2024: statworx COO Fabian Müller Takes Stock
Tarik Ashry
05. September 2024
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
The AI Act is here – These are the risk classes you should know
Fabian Müller
05. August 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 4)
Tarik Ashry
31. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 3)
Tarik Ashry
24. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 2)
Tarik Ashry
04. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Back to the Future: The Story of Generative AI (Episode 1)
Tarik Ashry
10. July 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Generative AI as a Thinking Machine? A Media Theory Perspective
Tarik Ashry
13. June 2024
Read more
  • Artificial Intelligence
  • GenAI
  • statworx
Custom AI Chatbots: Combining Strong Performance and Rapid Integration
Tarik Ashry
10. April 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
How managers can strengthen the data culture in the company
Tarik Ashry
21. February 2024
Read more
  • Artificial Intelligence
  • Data Culture
  • Human-centered AI
AI in the Workplace: How We Turn Skepticism into Confidence
Tarik Ashry
08. February 2024
Read more
  • Artificial Intelligence
  • Data Science
  • GenAI
The Future of Customer Service: Generative AI as a Success Factor
Tarik Ashry
25. October 2023
Read more
  • Artificial Intelligence
  • Data Science
How we developed a chatbot with real knowledge for Microsoft
Isabel Hermes
27. September 2023
Read more
  • Data Science
  • Data Visualization
  • Frontend Solution
Why Frontend Development is Useful in Data Science Applications
Jakob Gepp
30. August 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • statworx
the byte - How We Built an AI-Powered Pop-Up Restaurant
Sebastian Heinz
14. June 2023
Read more
  • Artificial Intelligence
  • Recap
  • statworx
Big Data & AI World 2023 Recap
Team statworx
24. May 2023
Read more
  • Data Science
  • Human-centered AI
  • Statistics & Methods
Unlocking the Black Box – 3 Explainable AI Methods to Prepare for the AI Act
Team statworx
17. May 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
How the AI Act will change the AI industry: Everything you need to know about it now
Team statworx
11. May 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Representation in AI – Part 2: Automating the Generation of Gender-Neutral Versions of Face Images
Team statworx
03. May 2023
Read more
  • Artificial Intelligence
  • Data Science
  • Statistics & Methods
A first look into our Forecasting Recommender Tool
Team statworx
26. April 2023
Read more
  • Artificial Intelligence
  • Data Science
On Can, Do, and Want – Why Data Culture and Death Metal have a lot in common
David Schlepps
19. April 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
GPT-4 - A categorisation of the most important innovations
Mareike Flögel
17. March 2023
Read more
  • Artificial Intelligence
  • Data Science
  • Strategy
Decoding the secret of Data Culture: These factors truly influence the culture and success of businesses
Team statworx
16. March 2023
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
How to create AI-generated avatars using Stable Diffusion and Textual Inversion
Team statworx
08. March 2023
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Strategy
Knowledge Management with NLP: How to easily process emails with AI
Team statworx
02. March 2023
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
3 specific use cases of how ChatGPT will revolutionize communication in companies
Ingo Marquart
16. February 2023
Read more
  • Recap
  • statworx
Ho ho ho – Christmas Kitchen Party
Julius Heinz
22. December 2022
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Real-Time Computer Vision: Face Recognition with a Robot
Sarah Sester
30. November 2022
Read more
  • Data Engineering
  • Tutorial
Data Engineering – From Zero to Hero
Thomas Alcock
23. November 2022
Read more
  • Recap
  • statworx
statworx @ UXDX Conf 2022
Markus Berroth
18. November 2022
Read more
  • Artificial Intelligence
  • Machine Learning
  • Tutorial
Paradigm Shift in NLP: 5 Approaches to Write Better Prompts
Team statworx
26. October 2022
Read more
  • Recap
  • statworx
statworx @ vuejs.de Conf 2022
Jakob Gepp
14. October 2022
Read more
  • Data Engineering
  • Data Science
Application and Infrastructure Monitoring and Logging: metrics and (event) logs
Team statworx
29. September 2022
Read more
  • Coding
  • Data Science
  • Machine Learning
Zero-Shot Text Classification
Fabian Müller
29. September 2022
Read more
  • Cloud Technology
  • Data Engineering
  • Data Science
How to Get Your Data Science Project Ready for the Cloud
Alexander Broska
14. September 2022
Read more
  • Artificial Intelligence
  • Human-centered AI
  • Machine Learning
Gender Repre­sentation in AI – Part 1: Utilizing StyleGAN to Explore Gender Directions in Face Image Editing
Isabel Hermes
18. August 2022
Read more
  • Artificial Intelligence
  • Human-centered AI
statworx AI Principles: Why We Started Developing Our Own AI Guidelines
Team statworx
04. August 2022
Read more
  • Data Engineering
  • Data Science
  • Python
How to Scan Your Code and Dependencies in Python
Thomas Alcock
21. July 2022
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Data-Centric AI: From Model-First to Data-First AI Processes
Team statworx
13. July 2022
Read more
  • Artificial Intelligence
  • Deep Learning
  • Human-centered AI
  • Machine Learning
DALL-E 2: Why Discrimination in AI Development Cannot Be Ignored
Team statworx
28. June 2022
Read more
  • R
The helfRlein package – A collection of useful functions
Jakob Gepp
23. June 2022
Read more
  • Recap
  • statworx
Unfold 2022 in Bern – by Cleverclip
Team statworx
11. May 2022
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
Break the Bias in AI
Team statworx
08. March 2022
Read more
  • Artificial Intelligence
  • Cloud Technology
  • Data Science
  • Sustainable AI
How to Reduce the AI Carbon Footprint as a Data Scientist
Team statworx
02. February 2022
Read more
  • Recap
  • statworx
2022 and the rise of statworx next
Sebastian Heinz
06. January 2022
Read more
  • Recap
  • statworx
5 highlights from the Zurich Digital Festival 2021
Team statworx
25. November 2021
Read more
  • Data Science
  • Human-centered AI
  • Machine Learning
  • Strategy
Why Data Science and AI Initiatives Fail – A Reflection on Non-Technical Factors
Team statworx
22. September 2021
Read more
  • Artificial Intelligence
  • Data Science
  • Human-centered AI
  • Machine Learning
  • statworx
Column: Human and machine side by side
Sebastian Heinz
03. September 2021
Read more
  • Coding
  • Data Science
  • Python
How to Automatically Create Project Graphs With Call Graph
Team statworx
25. August 2021
Read more
  • Coding
  • Python
  • Tutorial
statworx Cheatsheets – Python Basics Cheatsheet for Data Science
Team statworx
13. August 2021
Read more
  • Data Science
  • statworx
  • Strategy
STATWORX meets DHBW – Data Science Real-World Use Cases
Team statworx
04. August 2021
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
Deploy and Scale Machine Learning Models with Kubernetes
Team statworx
29. July 2021
Read more
  • Cloud Technology
  • Data Engineering
  • Machine Learning
3 Scenarios for Deploying Machine Learning Workflows Using MLflow
Team statworx
30. June 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification III: Explainability of Deep Learning Models With Grad-CAM
Team statworx
19. May 2021
Read more
  • Artificial Intelligence
  • Coding
  • Deep Learning
Car Model Classification II: Deploying TensorFlow Models in Docker Using TensorFlow Serving
No items found.
12. May 2021
Read more
  • Coding
  • Deep Learning
Car Model Classification I: Transfer Learning with ResNet
Team statworx
05. May 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
Car Model Classification IV: Integrating Deep Learning Models With Dash
Dominique Lade
05. May 2021
Read more
  • AI Act
Potential Not Yet Fully Tapped – A Commentary on the EU’s Proposed AI Regulation
Team statworx
28. April 2021
Read more
  • Artificial Intelligence
  • Deep Learning
  • statworx
Creaition – revolutionizing the design process with machine learning
Team statworx
31. March 2021
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning
5 Types of Machine Learning Algorithms With Use Cases
Team statworx
24. March 2021
Read more
  • Recaps
  • statworx
2020 – A Year in Review for Me and GPT-3
Sebastian Heinz
23. Dezember 2020
Read more
  • Artificial Intelligence
  • Deep Learning
  • Machine Learning
5 Practical Examples of NLP Use Cases
Team statworx
12. November 2020
Read more
  • Data Science
  • Deep Learning
The 5 Most Important Use Cases for Computer Vision
Team statworx
11. November 2020
Read more
  • Data Science
  • Deep Learning
New Trends in Natural Language Processing – How NLP Becomes Suitable for the Mass-Market
Dominique Lade
29. October 2020
Read more
  • Data Engineering
5 Technologies That Every Data Engineer Should Know
Team statworx
22. October 2020
Read more
  • Artificial Intelligence
  • Data Science
  • Machine Learning

Generative Adversarial Networks: How Data Can Be Generated With Neural Networks
Team statworx
10. October 2020
Read more
  • Coding
  • Data Science
  • Deep Learning
Fine-tuning Tesseract OCR for German Invoices
Team statworx
08. October 2020
Read more
  • Artificial Intelligence
  • Machine Learning
Whitepaper: A Maturity Model for Artificial Intelligence
Team statworx
06. October 2020
Read more
  • Data Engineering
  • Data Science
  • Machine Learning
How to Provide Machine Learning Models With the Help Of Docker Containers
Thomas Alcock
01. October 2020
Read more
  • Recap
  • statworx
STATWORX 2.0 – Opening of the New Headquarters in Frankfurt
Julius Heinz
24. September 2020
Read more
  • Machine Learning
  • Python
  • Tutorial
How to Build a Machine Learning API with Python and Flask
Team statworx
29. July 2020
Read more
  • Data Science
  • Statistics & Methods
Model Regularization – The Bayesian Way
Thomas Alcock
15. July 2020
Read more
  • Recap
  • statworx
Off To New Adventures: STATWORX Office Soft Opening
Team statworx
14. July 2020
Read more
  • Data Engineering
  • R
  • Tutorial
How To Dockerize ShinyApps
Team statworx
15. May 2020
Read more
  • Coding
  • Python
Making Of: A Free API For COVID-19 Data
Sebastian Heinz
01. April 2020
Read more
  • Frontend
  • Python
  • Tutorial
How To Build A Dashboard In Python – Plotly Dash Step-by-Step Tutorial
Alexander Blaufuss
26. March 2020
Read more
  • Coding
  • R
Why Is It Called That Way?! – Origin and Meaning of R Package Names
Team statworx
19. March 2020
Read more
  • Data Visualization
  • R
Community Detection with Louvain and Infomap
Team statworx
04. March 2020
Read more
  • Coding
  • Data Engineering
  • Data Science
Testing REST APIs With Newman
Team statworx
26. February 2020
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 2
Team statworx
19. Febuary 2020
Read more
  • Coding
  • Data Visualization
  • R
Animated Plots using ggplot and gganimate
Team statworx
14. Febuary 2020
Read more
  • Machine Learning
Machine Learning Goes Causal II: Meet the Random Forest’s Causal Brother
Team statworx
05. February 2020
Read more
  • Artificial Intelligence
  • Machine Learning
  • Statistics & Methods
Machine Learning Goes Causal I: Why Causality Matters
Team statworx
29.01.2020
Read more
  • Data Engineering
  • R
  • Tutorial
How To Create REST APIs With R Plumber
Stephan Emmer
23. January 2020
Read more
  • Recaps
  • statworx
statworx 2019 – A Year in Review
Sebastian Heinz
20. Dezember 2019
Read more
  • Artificial Intelligence
  • Deep Learning
Deep Learning Overview and Getting Started
Team statworx
04. December 2019
Read more
  • Coding
  • Machine Learning
  • R
Tuning Random Forest on Time Series Data
Team statworx
21. November 2019
Read more
  • Data Science
  • R
Combining Price Elasticities and Sales Forecastings for Sales Improvement
Team statworx
06. November 2019
Read more
  • Data Engineering
  • Python
Access your Spark Cluster from Everywhere with Apache Livy
Team statworx
30. October 2019
Read more
  • Recap
  • statworx
STATWORX on Tour: Wine, Castles & Hiking!
Team statworx
18. October 2019
Read more
  • Data Science
  • R
  • Statistics & Methods
Evaluating Model Performance by Building Cross-Validation from Scratch
Team statworx
02. October 2019
Read more
  • Data Science
  • Machine Learning
  • R
Time Series Forecasting With Random Forest
Team statworx
25. September 2019
Read more
  • Coding
  • Frontend
  • R
Dynamic UI Elements in Shiny – Part 1
Team statworx
11. September 2019
Read more
  • Machine Learning
  • R
  • Statistics & Methods
What the Mape Is FALSELY Blamed For, Its TRUE Weaknesses and BETTER Alternatives!
Team statworx
16. August 2019
Read more
  • Coding
  • Python
Web Scraping 101 in Python with Requests & BeautifulSoup
Team statworx
31. July 2019
Read more
  • Coding
  • Frontend
  • R
Getting Started With Flexdashboards in R
Thomas Alcock
19. July 2019
Read more
  • Recap
  • statworx
statworx summer barbecue 2019
Team statworx
21. June 2019
Read more
  • Data Visualization
  • R
Interactive Network Visualization with R
Team statworx
12. June 2019
Read more
This is some text inside of a div block.
This is some text inside of a div block.