de
                    array(2) {
  ["de"]=>
  array(13) {
    ["code"]=>
    string(2) "de"
    ["id"]=>
    string(1) "3"
    ["native_name"]=>
    string(7) "Deutsch"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    string(1) "1"
    ["default_locale"]=>
    string(5) "de_DE"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "de"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(7) "Deutsch"
    ["url"]=>
    string(73) "https://www.statworx.com/content-hub/blog/tag/artificial-intelligence-de/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/de.png"
    ["language_code"]=>
    string(2) "de"
  }
  ["en"]=>
  array(13) {
    ["code"]=>
    string(2) "en"
    ["id"]=>
    string(1) "1"
    ["native_name"]=>
    string(7) "English"
    ["major"]=>
    string(1) "1"
    ["active"]=>
    int(0)
    ["default_locale"]=>
    string(5) "en_US"
    ["encode_url"]=>
    string(1) "0"
    ["tag"]=>
    string(2) "en"
    ["missing"]=>
    int(0)
    ["translated_name"]=>
    string(8) "Englisch"
    ["url"]=>
    string(76) "https://www.statworx.com/en/content-hub/blog/tag/artificial-intelligence-en/"
    ["country_flag_url"]=>
    string(87) "https://www.statworx.com/wp-content/plugins/sitepress-multilingual-cms/res/flags/en.png"
    ["language_code"]=>
    string(2) "en"
  }
}
                    
Kontakt

Intelligente Chatbots sind eine der spannendsten und heute schon sichtbarsten Anwendungen von Künstlicher Intelligenz. ChatGPT und Konsorten erlauben seit Anfang 2023 den unkomplizierten Dialog mit großen KI-Sprachmodellen, was bereits eine beeindruckende Bandbreite an Hilfestellungen im Alltag bietet. Ob Nachhilfe in Statistik, eine Rezeptideen für ein Dreigängemenü mit bestimmten Zutaten oder ein Haiku zu einem bestimmten Thema: Moderne Chatbots liefern im Nu Antworten. Ein Problem haben sie aber noch: Obwohl diese Modelle einiges gelernt haben während des Trainings, sind sie eigentlich keine Wissensdatenbanken. Deshalb liefern sie oft inhaltlichen Unsinn ab – wenn auch überzeugenden.

Mit der Möglichkeit, einem großen Sprachmodell eigene Dokumente zur Verfügung zu stellen, lässt sich dieses Problem aber angehen – und genau danach hat uns unser Partner Microsoft zu einem außergewöhnlichen Anlass gefragt.

Microsofts Cloud Plattform Azure hat sich in den letzten Jahren als erstklassige Plattform für den gesamten Machine-Learning-Prozess erwiesen. Um den Einstieg in Azure zu erleichtern, hat uns Microsoft gebeten, eine spannende KI-Anwendung in Azure umzusetzen und bis ins Detail zu dokumentieren. Dieser sogenannte MicroHack soll Interessierten eine zugängliche Ressource für einen spannenden Use Case bieten.

Unseren Microhack haben wir dem Thema „Retrieval-Augmented Generation“ gewidmet, um damit große Sprachmodelle auf das nächste Level zu heben. Die Anforderungen waren simpel: Baut einen KI-Chatbot in Azure, lasst ihn Informationen aus euren eigenen Dokumenten verarbeiten, dokumentiert jeden Schritt des Projekts und veröffentlicht die Resultate auf dem
offiziellen MicroHacks GitHub Repository als Challenges und Lösungen – frei zugänglich für alle.

Moment, wieso muss KI Dokumente lesen können?

Große Sprachmodelle (LLMs) beeindrucken nicht nur mit ihren kreativen Fähigkeiten, sondern auch als Sammlungen komprimierten Wissens. Während des extensiven Trainingsprozesses eines LLMs lernt das Modell nicht bloß die Grammatik einer Sprache, sondern auch Semantik und inhaltliche Zusammenhänge; kurz gesagt lernen große Sprachmodelle Wissen. Ein LLM kann dadurch befragt werden und überzeugende Antworten generieren – mit einem Haken. Während die gelernten Sprachfertigkeiten eines LLMs oft für die große Mehrheit an Anwendungen taugen, kann das vom gelernten Wissen meist nicht behauptet werden. Ohne erneutem Training auf weiteren Dokumenten bleibt der Wissensstand eines LLMs statisch.

Dies führt zu folgenden Problemen:

  • Das trainierte LLMs weist zwar ein großes Allgemeinwissen – oder auch Fachwissen – auf, kann aber keine Auskunft über Wissen aus nicht-öffentlich zugänglichen Quellen geben.
  • Das Wissen eines trainierten LLMs ist schnell veraltet: Der sogenannte „Trainings-Cutoff“ führt dazu, dass das LLM keine Aussagen über Ereignisse, Dokumente oder Quellen treffen kann, die sich erst nach dem Trainingsstart ereignet haben oder später entstanden sind.
  • Die technische Natur großer Sprachmodelle als Text-Vervollständigungs-Maschinen führt dazu, dass diese Modelle gerne Sachverhalte erfinden, wenn sie eigentlich keine passende Antwort gelernt haben. Sogenannte „Halluzinationen“ führen dazu, dass die Antworten eines LLMs ohne Überprüfung nie komplett vertrauenswürdig sind – unabhängig davon, wie überzeugend sie wirken.

Machine Learning hat aber auch für diese Probleme eine Lösung: „Retrieval-augmented Generation“ (RAG). Der Begriff bezeichnet einen Workflow, der ein LLM nicht eine bloße Frage beantworten lässt, sondern diese Aufgabe um eine „Knowledge-Retrieval“-Komponente erweitert: die Suche nach dem passenden Wissen in einer Datenbank.

Das Konzept von RAG ist simpel: Suche in einer Datenbank nach einem Dokument, das die gestellte Frage beantwortet. Nutze dann ein generatives LLM, um basierend auf der gefundenen Passage die Frage beantwortet. Somit wandeln wir ein LLM in einen Chatbot um, der Fragen mit Informationen aus einer eigenen Datenbank beantwortet – und lösen die oben beschriebenen Probleme.

Was passiert bei einem solchen „RAG“ genau?

RAG besteht also aus zwei Schritten: „Retrieval“ und „Generation“. Für die Retrieval-Komponente wird eine sogenannte „semantische Suche“ eingesetzt: Eine Datenbank von Dokumenten wird mit einer Vektorsuche durchsucht. Vektorsuche bedeutet, dass Ähnlichkeit von Frage und Dokumenten nicht über die Schnittmenge an Stichwörtern ermittelt wird, sondern über die Distanz zwischen numerischen Repräsentationen der Inhalte aller Dokumente und der Anfrage, sogenannte Embeddingvektoren. Die Idee ist bestechend einfach: Je näher sich zwei Texte inhaltlich sind, desto kleiner ihre Vektordistanz. Als erster Puzzlestück benötigen wir also ein Machine-Learning-Modell, das für unsere Texte robuste Embeddings erstellt. Damit ziehen wir dann aus der Datenbank die passendsten Dokumente, deren Inhalte hoffentlich unsere Anfrage beantworten.

Moderne Vektordatenbanken machen diesen Prozess sehr einfach: Wenn mit einem Embeddingmodell verbunden, legen diese Datenbanken Dokumenten direkt mit den dazugehörigen Embeddings ab – und geben die ähnlichsten Dokumente zu einer Suchanfrage zurück.

Abbildung 1: Darstellung des typischen RAG-Workflows

Basierend auf den Inhalten der gefundenen Dokumente wird im nächsten Schritt eine Antwort zur Frage generiert. Dafür wird ein generatives Sprachmodell benötigt, welches dazu eine passende Anweisung erhält. Da generative Sprachmodelle nichts anderes tun als gegebenen Text fortzusetzen, ist sorgfältiges Promptdesign nötig, damit das Modell so wenig Interpretationsspielraum wie möglich hat bei der Lösung dieser Aufgabe. Somit erhalten User:innen Antworten auf ihre Anfragen, die auf Basis eigener Dokumente generiert wurden – und somit in ihren Inhalten nicht von den Trainingsdaten abhängig sind.

Wie kann so ein Workflow denn in Azure umgesetzt werden?

Für die Umsetzung eines solchen Workflows haben wir vier separate Schritte benötigt – und unseren MicroHack genauso aufgebaut:

Schritt 1: Setup zur Verarbeitung von Dokumenten in Azure

In einem ersten Schritt haben wir die Grundlagen für die RAG-Pipeline gelegt. Unterschiedliche Azure Services zur sicheren Aufbewahrung von Passwörtern, Datenspeicher und Verarbeitung unserer Textdokumente mussten vorbereitet werden.

Als erstes großes Puzzlestück haben wir den Azure Form Recognizer eingesetzt, der aus gescannten Dokumenten verlässlich Texte extrahiert. Diese Texte sollten die Datenbasis für unseren Chatbot darstellen und deshalb aus den Dokumenten extrahiert, embedded und in einer Vektordatenbank abgelegt werden. Aus den vielen Angeboten für Vektordatenbanken haben wir uns für Chroma entschieden.

Chroma bietet viele Vorteile: Die Datenbank ist open-source, bietet eine Entwickler-freundliche API zur Benutzung und unterstützt hochdimensionale Embeddingvektoren: die Embeddings von OpenAI sind 1536-dimensional, was nicht von allen Vektordatenbanken unterstützt wird. Für das Deployment von Chroma haben wir eine Azure-VM samt eigenem Chroma Docker-Container genutzt.

Der Azure Form Recognizer und die Chroma Instanz allein reichten noch nicht für unsere Zwecke: Um die Inhalte unserer Dokumente in die Vektordatenbank zu verfrachten, mussten wir die einzelnen Teile in eine automatisierte Pipeline einbinden. Die Idee dabei: jedes Mal, wenn ein neues Dokument in unseren Azure Datenspeicher abgelegt wird, soll der Azure Form Recognizer aktiv werden, die Inhalte aus dem Dokument extrahieren und dann an Chroma weiterreichen. Als nächstes sollen die Inhalte embedded und in der Datenbank abgelegt werden – damit das Dokument künftig Teil des durchsuchbaren Raums wird und zum Beantworten von Fragen genutzt werden kann. Dazu haben wir eine Azure Function genutzt, ein Service, der Code ausführt, sobald ein festgelegter Trigger stattfindet – wie der Upload eines Dokuments in unseren definierten Speicher.

Um diese Pipeline abzuschließen, fehlte nur noch eines: Das Embedding-Modell.

Schritt 2: Vervollständigung der Pipeline

Für alle Machine Learning Komponenten haben wir den OpenAI-Service in Azure genutzt. Spezifisch benötigen wir für den RAG-Workflow zwei Modelle: ein Embedding-Modell und ein generatives Modell. Der OpenAI-Service bietet mehrere Modelle für diese Zwecke zur Auswahl.

Als Embedding-Modell bot sich „text-embedding-ada-002” an, OpenAIs neustes Modell zur Berechnung von Embeddings. Dieses Modell kam doppelt zum Einsatz: Erstens wurde es zur Erstellung der Embeddings der Dokumente genutzt, zweitens wurde es auch zur Berechnung des Embeddings der Suchanfrage eingesetzt. Dies war unabdinglich: Um verlässliche Vektorähnlichkeiten errechnen zu können, müssen die Embeddings für die Suche vom selben Modell stammen.

Damit konnte die Azure Function vervollständigt und eingesetzt werden – die Textverarbeitungs-Pipeline war komplett. Schlussendlich sah die funktionale Pipeline folgendermaßen aus:

Abbildung 2: Der vollständige RAG-Workflow in Azure

Schritt 3 Antwort-Generierung

Um den RAG-Workflow abzuschließen, sollte auf Basis der gefundenen Dokumente aus Chroma noch eine Antwort generiert werden: Wir entschieden uns für den Einsatz von „GPT3.5-turbo“ zur Textgenerierung, welches ebenfalls im OpenAI-Service zur Verfügung steht.

Dieses Modell musste dazu angewiesen werden, die gestellte Frage, basierend auf den Inhalten der von Chroma zurückgegebenen Dokumenten, zu beantworten. Dazu war sorgfältiges Prompt-Engineering nötig. Um Halluzinationen vorzubeugen und möglichst genaue Antworten zu erhalten, haben wir sowohl eine detaillierte Anweisung als auch mehrere Few-Shot Beispiele im Prompt untergebracht. Schlussendlich haben wir uns auf folgenden Prompt festgelegt:

"""I want you to act like a sentient search engine which generates natural sounding texts to answer user queries. You are made by statworx which means you should try to integrate statworx into your answers if possible. Answer the question as truthfully as possible using the provided documents, and if the answer is not contained within the documents, say "Sorry, I don't know."
Examples:
Question: What is AI?
Answer: AI stands for artificial intelligence, which is a field of computer science focused on the development of machines that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and natural language processing.
Question: Who won the 2014 Soccer World Cup?
Answer: Sorry, I don't know.
Question: What are some trending use cases for AI right now?
Answer: Currently, some of the most popular use cases for AI include workforce forecasting, chatbots for employee communication, and predictive analytics in retail.
Question: Who is the founder and CEO of statworx?
Answer: Sebastian Heinz is the founder and CEO of statworx.
Question: Where did Sebastian Heinz work before statworx?
Answer: Sorry, I don't know.
Documents:\n"""

Zum Schluss werden die Inhalte der gefundenen Dokumente an den Prompt angehängt, womit dem generativen Modell alle benötigten Informationen zur Verfügung standen.

Schritt 4: Frontend-Entwicklung und Deployment einer funktionalen App

Um mit dem RAG-System interagieren zu können, haben wir eine einfache streamlit-App gebaut, die auch den Upload neuer Dokumente in unseren Azure Speicher ermöglichte – um damit erneut die Dokument-Verarbeitungs-Pipeline anzustoßen und den Search-Space um weitere Dokumente zu erweitern.
Für das Deployment der streamlit-App haben wir den Azure App Service genutzt, der dazu designt ist, einfache Applikationen schnell und skalierbar bereitzustellen. Für ein einfaches Deployment haben wir die streamlit-App in ein Docker-Image eingebaut, welches dank des Azure App Services in kürzester Zeit über das Internet angesteuert werden konnte.

Und so sah unsere fertige App aus:

Abbildung 3: Die fertige streamlit-App im Einsatz

Was haben wir bei dem MicroHack gelernt?

Während der Umsetzung dieses MicroHacks haben wir einiges gelernt. Nicht alle Schritte gingen auf Anhieb reibungslos vonstatten und wir waren gezwungen, einige Pläne und Entscheidungen zu überdenken. Hier unsere fünf Takeaways aus dem Entwicklungsprozess:

Nicht alle Datenbanken sind gleich

Während der Entwicklung haben wir mehrmals unsere Wahl der Vektordatenbank geändert: von OpenSearch zu ElasticSearch und schlussendlich zu Chroma. Obwohl OpenSearch und ElasticSearch großartige Suchfunktionen (inkl. Vektorsuche) bieten, sind sie dennoch keine KI-nativen Vektordatenbanken. Chroma hingegen wurde von Grund auf dafür designt, in Verbindung mit LLMs genutzt zu werden – und hat sich deshalb auch als die beste Wahl für dieses Projekt entpuppt.

Chroma ist eine großartige open-source VektorDB für kleinere Projekte und Prototyping

Chroma besticht insbesondere für kleinere Use-Cases und schnelles Prototyping. Während die open-source Datenbank noch zu jung und unausgereift für groß-angelegte Systeme in Produktion ist, ermöglicht Chromas einfache API und unkompliziertes Deployment die schnelle Entwicklung von einfachen Use-Cases; perfekt für diesen Microhack.

Azure Functions sind eine fantastische Lösung, um kleinere Codestücke nach Bedarf auszuführen

Azure Functions taugen ideal für die Ausführung von Code, der nicht in vorgeplanten Intervallen benötigt wird. Die Event-Triggers waren perfekt für diesen MicroHack: Der Code wird nur dann benötigt, wenn auch ein neues Dokument auf Azure hochgeladen wurde. Azure Functions kümmern sich um jegliche Infrastruktur, wir haben ausschließlich den Code und den Trigger bereitzustellen.

Azure App Service ist großartig für das Deployment von streamlit-Apps

Unsere streamlit-App hätte kein einfacheres Deployment erleben können als mit dem Azure App Service. Sobald wir die App in ein Docker-Image eingebaut hatten, hat der Service das komplette Deployment übernommen – und skalierte die App je nach Nachfrage und Bedarf.

Networking sollte nicht unterschätzt werden

Damit alle genutzten Services auch miteinander arbeiten können, muss die Kommunikation zwischen den einzelnen Services gewährleistet werden. Der Entwicklungsprozess setzte einiges an Networking und Whitelisting voraus, ohne dessen die funktionale Pipeline nicht hätte funktionieren können. Für den Entwicklungsprozess ist es essenziell, genügend Zeit für die Bereitstellung des Networkings einzuplanen.

Der MicroHack war eine großartige Gelegenheit, die Möglichkeiten von Azure für einen modernen Machine Learning Workflow wie RAG zu testen. Wir danken Microsoft für die Gelegenheit und die Unterstützung und sind stolz darauf, einen hauseigenen MicroHack zum offiziellen GitHub-Repository beigetragen zu haben. Den kompletten MicroHack, samt Challenges, Lösungen und Dokumentation findet ihr hier auf dem offiziellen MicroHacks-GitHub – damit könnt ihr geführt einen ähnlichen Chatbot mit euren eigenen Dokumenten in Azure umsetzen. Oliver Guggenbühl

2021 hat die Europäische Kommission einen Gesetzesvorschlag zur Regulierung künstlicher Intelligenz eingereicht. Dieser so genannte AI-Act hat in diesem Mai weitere wichtige Gremien durchlaufen, womit die Verabschiedung des Gesetzesentwurfs unausweichlich näher rückt. Eine Besonderheit des geplanten Gesetzes ist das so genannte Marktortprinzip: Demzufolge werden weltweit Unternehmen von dem AI-Act betroffen sein, die künstliche Intelligenz auf dem europäischen Markt anbieten, betreiben oder deren KI-generierter Output innerhalb der EU genutzt wird.

Als künstliche Intelligenz gelten dabei maschinenbasierte Systeme, die autonom Prognosen, Empfehlungen oder Entscheidungen treffen und damit die physische und virtuelle Umwelt beeinflussen können. Das betrifft beispielsweise KI-Lösungen, die den Recruiting-Prozess unterstützen, Predictive-Maintenance-Lösungen und Chatbots wie ChatGPT. Dabei unterscheiden sich die rechtlichen Auflagen, die unterschiedliche KI-Systeme erfüllen müssen, stark – abhängig von einer Einstufung in Risikoklassen.

Die Risikoklasse bestimmt die rechtlichen Auflagen

Der risikobasierte Ansatz der EU umfasst insgesamt vier Risikoklassen: niedriges, begrenztes, hohes und inakzeptables Risiko. Diese Klassen spiegeln wider, inwiefern eine künstliche Intelligenz europäische Werte und Grundrechte gefährdet. Wie die Bezeichnungen der Risikoklassen bereits andeuten, sind nicht alle KI-Systeme zulässig. KI-Systeme, die der Kategorie „inakzeptables Risiko“ angehören, sollen gemäß des AI-Acts verboten werden. Für die übrigen drei Risikoklassen gilt: Je höher das Risiko, desto umfangreicher und strikter sind die rechtlichen Anforderungen an das KI-System. Welche KI-Systeme in welche Risikoklasse fallen und welche Auflagen damit verbunden sind, erläutern wir im Folgenden. Dabei beziehen sich die Informationen auf den gemeinsamen Bericht des IMCO[1] und des LIBE[2] vom Mai 2023. Das Dokument stellt zum Zeitpunkt der Veröffentlichung den aktuellen Stand des AI-Act dar.

Verbot für Social Scoring und biometrische Fernidentifikation

Einige KI-Systeme bergen ein erhebliches Potenzial zur Verletzung der Menschenrechte und Grundprinzipien, weshalb sie der Kategorie „inakzeptables Risiko” zugeordnet werden. Zu diesen gehören:

  • Echtzeit-basierte biometrische Fernidentifikationssysteme in öffentlich zugänglichen Räumen;
  • Biometrische Fernidentifikationssysteme im Nachhinein, mit Ausnahme von Strafverfolgungsbehörden zur Verfolgung schwerer Straftaten und ausschließlich mit richterlicher Genehmigung;
  • Biometrische Kategorisierungssysteme, die sensible Merkmale wie Geschlecht, ethnische Zugehörigkeit oder Religion verwenden;
  • Vorausschauende Polizeiarbeit auf Basis von so genanntem „Profiling“ – also einer Profilerstellung unter Einbezug von Hautfarbe, vermuteten Religionszugehörigkeit und ähnlich sensiblen Merkmalen –, dem geografischen Standort oder vorhergehenden kriminellen Verhalten;
  • Systeme zur Emotionserkennung im Bereich der Strafverfolgung, Grenzkontrolle, am Arbeitsplatz und in Bildungseinrichtungen;
  • Beliebige Extraktion von biometrischen Daten aus sozialen Medien oder Videoüberwachungsaufnahmen zur Erstellung von Datenbanken zur Gesichtserkennung;
  • Social Scoring, das zu Benachteiligung in sozialen Kontexten führt;
  • KI, die die Schwachstellen einer bestimmten Personengruppe ausnutzt oder unbewusste Techniken einsetzt, die zu Verhaltensweisen führen können, die physischen oder psychischen Schaden verursachen.

Diese KI-Systeme sollen im Rahmen des AI-Acts auf dem europäischen Markt verboten werden. Unternehmen, deren KI-Systeme in diese Risikoklasse fallen könnten, sollten sich dringend mit den bevorstehenden Anforderungen auseinandersetzen und Handlungsoptionen ausloten.

Zahlreiche Auflagen für KI mit Risiko für Gesundheit, Sicherheit oder Grundrechte

In die Kategorie des hohen Risikos fallen alle KI-Systeme, die nicht explizit verboten sind, aber dennoch ein hohes Risiko für Gesundheit, Sicherheit oder Grundrechte darstellen. Folgende Anwendungs- und Einsatzgebiete werden dabei explizit im vorliegenden Gesetzesvorschlag benannt:

  • Biometrische und biometrisch gestützte Systeme, die nicht in die Risikoklasse „inakzeptables Risiko“ fallen;
  • Management und Betrieb kritischer Infrastruktur;
  • allgemeine und berufliche Bildung;
  • Zugang und Anspruch auf grundlegende private und öffentliche Dienste und Leistungen;
  • Beschäftigung, Personalmanagement und Zugang zur Selbstständigkeit;
  • Strafverfolgung;
  • Migration, Asyl und Grenzkontrolle;
  • Rechtspflege und demokratische Prozesse

Für diese KI-Systeme sind umfassende rechtliche Auflagen vorgesehen, die vor der Inbetriebnahme umgesetzt und während des gesamten KI-Lebenszyklus beachtet werden müssen:

  • Qualitäts- und Risikomanagement
  • Data-Governance-Strukturen
  • Qualitätsanforderungen an Trainings-, Test- und Validierungsdaten
  • Technische Dokumentationen und Aufzeichnungspflicht
  • Erfüllung der Transparenz- und Bereitstellungspflichten
  • Menschliche Aufsicht, Robustheit, Sicherheit und Genauigkeit
  • Konformitäts-Deklaration inkl. CE-Kennzeichnungspflicht
  • Registrierung in einer EU-weiten Datenbank

KI-Systeme, die in einem der oben genannten Bereiche eingesetzt werden, aber keine Gefahr für Gesundheit, Sicherheit, Umwelt und Grundrechte darstellen, unterliegen nicht den rechtlichen Anforderungen. Jedoch gilt es dies nachzuweisen, in dem die zuständige nationale Behörde über das KI-System informiert wird. Diese hat dann drei Monate Zeit, die Risiken des KI-Systems zu prüfen. Innerhalb dieser drei Monate kann die KI bereits in Betrieb genommen werden. Sollte sich jedoch zeigen, dass die doch als Hochrisiko-KI gilt, können hohe Strafzahlungen anfallen.

Eine Sonderregelung gilt außerdem für KI-Produkte und KI-Sicherheitskomponenten von Produkten, deren Konformität auf Grundlage von EU-Rechtsvorschriften bereits durch Dritte geprüft wird. Dies ist beispielsweise bei KI in Spielzeugen der Fall. Um eine Überregulierung sowie zusätzliche Belastung zu vermeiden, werden diese vom AI-Act nicht direkt betroffen sein.

KI mit limitiertem Risiko muss Transparenzpflichten erfüllen

KI, die direkt mit Menschen interagieren fallen in die Risikoklasse „limitiertes Risiko“. Dazu zählen Emotionserkennungssysteme, biometrische Kategorisierungssysteme sowie KI-generierte oder veränderte Inhalte, welche realen Personen, Gegenständen, Orten oder Ereignissen ähnelt und fälschlicherweise für real gehalten werden könnte („Deepfakes“). Für diese Systeme sieht der Gesetzesentwurf die Verpflichtung vor, Verbraucher:innen über den Einsatz künstlicher Intelligenz zu informieren. Dadurch soll es Konsument:innen erleichtert werden, sich aktiv für oder gegen die Nutzung zu entscheiden. Außerdem wird ein Verhaltenskodex empfohlen.

Keine rechtlichen Auflagen für KI mit geringem Risiko

Viele KI-Systeme wie beispielsweise Predictive-Maintenance oder Spamfilter fallen in die Risikoklasse „geringes Risiko“. Unternehmen, welche ausschließlich solche KI-Lösungen anbieten oder nutzen, werden kaum vom AI-Act betroffen sein, denn bisher sind für solche Anwendungen keine rechtlichen Auflagen vorgesehen. Lediglich ein Verhaltenskodex wird empfohlen.

Generative KI wie ChatGPT wird gesondert geregelt

Generative KI-Modelle und Basismodelle mit vielfältigen Einsatzmöglichkeiten wurden in dem ursprünglich eingereichten Entwurf für den AI-Act nicht berücksichtigt. Daher werden die Regulierungsmöglichkeiten solcher KI-Modelle seit dem Launch von ChatGPT durch openAI besonders intensiv diskutiert. Der  aktuelle Entwurf der beiden Ausschüsse schlägt umfassende Auflagen für KI-Modelle mit allgemeinem Verwendungszweck vor:

  • Qualitäts- und Risikomanagement
  • Data-Governance-Strukturen
  • Technische Dokumentationen
  • Erfüllung der Transparenz- und Informationspflichten
  • Sicherstellung der Performance, Interpretierbarkeit, Korrigierbarkeit, Sicherheit, Cybersecurity
  • Einhaltung von Umweltstandards
  • Zusammenarbeit mit nachgeschalteten Anbietern
  • Registrierung in einer EU-weiten Datenbank

Unternehmen können sich schon jetzt auf den AI-Act vorbereiten

Ob die vorgestellten rechtlichen Auflagen schlussendlich in dieser Art verabschiedet werden, gilt es abzuwarten. Dennoch zeichnet sich deutlich ab, dass der risikobasierte Ansatz zur Regulierung von künstlicher Intelligenz auf breite Zustimmung innerhalb der EU-Institutionen stößt. Somit ist die Wahrscheinlichkeit hoch, dass der AI-Act mit den definierten Risikoklassen verabschiedet wird.

Nach der offiziellen Verabschiedung des Gesetzesvorschlags, beginnt die zweijährige Übergangsphase für Unternehmen. In dieser gilt es, KI-Systeme und damit verbundene Prozesse gesetzeskonform zu gestalten. Da bei Nicht-Konformität Bußgelder bis zu 40.000.000 € möglich sind, empfehlen wir Unternehmen, frühzeitig die Anforderungen des AI-Acts an das eigene Unternehmen zu evaluieren.

Ein erster Schritt dafür ist die Einschätzung der Risikoklasse eines jeden KI-Systems. Falls Sie auf Basis der oben genannten Beispiele noch nicht sicher sind, in welche Risikoklassen Ihre KI-System fallen, empfehlen wir unseren kostenfreien AI Act Quick Check. Er unterstützt Sie dabei, die Risikoklasse abzuschätzen.

 

[1] Ausschusses für Binnenmarkt und Verbraucherschutz : https://www.europarl.europa.eu/committees/de/imco/home/members

[2] Ausschusses für bürgerliche Freiheiten, Justiz und Inneres: https://www.europarl.europa.eu/committees/de/libe/home/highlights

 

Mehr Informationen:

Quellen:

 

Read next …

Wie der AI-Act die KI-Branche verändern wird: Alles, was man jetzt darüber wissen muss
Die Black-Box entschlüsseln – 3 Explainable AI Methoden zur Vorbereitung auf den AI-Act

… and explore new

Wie Du Dein Data Science Projekt fit für die Cloud machst
Wie Du Deinen Code und Deine Abhängigkeiten in Python scannst

Julia Rettig

Habt ihr euch jemals ein Restaurant vorgestellt, in dem alles von KI gesteuert wird? Vom Menü über die Cocktails, das Hosting, die Musik und die Kunst? Nein? Ok, dann klickt bitte hier.

Falls ja, ist eure Traumvorstellung bereits Realität geworden. Wir haben es geschafft: Willkommen im „the byte“ – Deutschlands (vielleicht auch weltweit erstes) KI-gesteuertes Pop-up Restaurant!

Als jemand, der seit über zehn Jahren in der Daten- und KI-Beratung tätig ist und statworx und den AI Hub Frankfurt aufgebaut hat, habe ich immer daran gedacht, die Möglichkeiten von KI außerhalb der typischen Geschäftsanwendungen zu erkunden. Warum? Weil KI jeden Aspekt unserer Gesellschaft beeinflussen wird, nicht nur die Wirtschaft. KI wird überall sein – in Schulen, Kunst und Musik, Design und Kultur. Überall. Bei der Erkundung dieser Auswirkungen von KI traf ich Jonathan Speier und James Ardinast von S-O-U-P, zwei gleichgesinnte Gründer aus Frankfurt, die darüber nachdenken, wie Technologie Städte und unsere Gesellschaft prägen wird.

S-O-U-P ist ihre Initiative, die an der Schnittstelle von Kultur, Urbanität und Lifestyle tätig ist. Mit ihrem jährlichen „S-O-U-P Urban Festival“ bringen sie Kreative, Unternehmen, Gastronomie- und Menschen aus Frankfurt und darüber hinaus zusammen.

Als Jonathan und ich über KI und ihre Auswirkungen auf Gesellschaft und Kultur diskutierten, kamen wir schnell auf die Idee eines KI-generierten Menüs für ein Restaurant. Glücklicherweise ist James, Jonathans Mitbegründer von S-O-U-P, ein erfolgreicher Gastronomie-Unternehmer aus Frankfurt. Nun fügten sich die Puzzlestücke zusammen. Nach einem weiteren Treffen mit James in einem seiner Restaurants (und ein paar Drinks) beschlossen wir, Deutschlands erstes KI-gesteuertes Pop-up-Restaurant zu eröffnen: the byte!

the byte: Unser Konzept

Wir stellten uns the byte als ein immersives Erlebnis vor, bei dem KI in möglichst vielen Elementen des Erlebnisses integriert ist. Alles, vom Menü über die Cocktails, Musik, Branding und Kunst an der Wand: wirklich alles wurde von KI generiert. Die Integration von KI in all diese Komponenten unterschied sich auch für mich sehr von meiner ursprünglichen Aufgabe, Unternehmen bei ihren Daten- und KI-Herausforderungen zu helfen.

Branding

Bevor wir das Menü erstellt haben, entwickelten wir die visuelle Identität unseres Projekts. Wir entschieden uns für einen „Lo-Fi“-Ansatz und verwendeten eine pixel-artige Schrift in Kombination mit KI-generierten Visuals von Tellern und Gerichten. Unser Hauptmotiv, ein neonbeleuchteter weißer Teller, wurde mit Hilfe von DALL-E 2 erstellt und war in all unseren Marketingmaterialien zu finden.

Location

Wir haben the byte in einer der coolsten Restaurant-Event-Locations in Frankfurt veranstaltet: Stanley. Das Stanley ist ein Restaurant mit etwa 60 Sitzplätzen und einer voll ausgestatteten Bar im Inneren (ideal für unsere KI-generierten Cocktails). Die Atmosphäre ist eher dunkel und gemütlich, mit dunklen Marmorplatten an den Wänden, weißen Tischläufern und einem großen roten Fenster, das einen Blick in die Küche ermöglicht.

Das Menü

Das Herzstück unseres Konzepts war ein 5-Gänge-Menü, welches wir mit dem Ziel entworfen haben, die klassische Frankfurter Küche mit den multikulturellen und vielfältigen Einflüssen aus Frankfurt zu erweitern (für alle, die die Frankfurter Küche kennen, wissen, dass dies keine leichte Aufgabe war).

Mit Hilfe von GPT-4 und etwas „Prompt Engineering“-Magie, haben wir ein Menü erstellt, das von der erfahrenen Küchencrew des Stanley getestet (vielen Dank für diese großartige Arbeit!) und dann zu einem endgültigen Menü zusammengestellt wurde. Nachfolgend findet ihr unseren Prompt, der verwendet wurde, um die Menüauswahl zu erstellen:

„Create a 5-course menu that elevates the classical Frankfurter kitchen. The menu must be a fusion of classical Frankfurter cuisine combined with the multicultural influences of Frankfurt. Describe each course, its ingredients as well as a detailed description of each dish’s presentation.“

Zu meiner Überraschung waren nur geringfügige Anpassungen an den Rezepten erforderlich, obwohl einige der KI-Kreationen extrem abenteuerlich waren! Hier ist unser endgültiges Menü:

  • Handkäs-Mousse mit eingelegter Rote Bete auf geröstetem Sauerteigbrot
  • „Next Level“ Grüne Soße (mit Koriander und Minze) mit einem frittierten Panko-Ei
  • Cremesuppe aus weißem Spargel mit Kokosmilch und gebratenem Curry-Fisch
  • Currywurst (Rind & vegan) by Best Worscht in Town mit Karotten-Ingwer-Püree und Pinienkernen
  • Frankfurter Käsekuchen mit Äppler-Gelee, Apfelschaum und Hafer-Pekannuss-Streusel

Mein klarer Favorit war die „Next Level“ Grüne Soße, eine orientalische Variante der klassischen Frankfurter 7-Kräuter-Grünen Soße mit dem panierten Panko-Ei. Lecker!

Hier könnt ihr das Menü in freier Wildbahn sehen 🍲

KI-Cocktails

Neben dem Menü haben wir GPT angewiesen, Rezepte für berühmte Cocktail-Klassiker zu erstellen, die zu unserem Frankfurt-Fusion-Thema passen. Hier sind die Ergebnisse:

  • Frankfurt Spritz (Frankfurter Äbbelwoi, Minze, Sprudelwasser)
  • Frankfurt Mule (Variation eines Moscow Mule mit Calvados)
  • The Main (Variation eines Swimming Pool Cocktails)

Mein Favorit war der Frankfurt Spritz – er war erfrischend, kräuterig und super lecker (siehe Bild unten).

KI-Host: Ambrosia, die kulinarische KI

Ein wichtiger Teil unseres Konzepts war „Ambrosia“, ein KI-generierter Host, die unsere Gäste durch den Abend geführt und das Konzept sowie die Entstehung des Menüs erklärt hat. Es war uns ein wichtiges Anliegen, die KI für die Gäste erlebbar zu machen. Wir engagierten einen professionellen Drehbuchautor für das Skript und verwendeten murf.ai, um Text-zu-Sprach-Elemente zu erstellen, die zu Beginn des Dinners und zwischen den Gängen abgespielt wurden.

Notiz: Ambrosia spricht ab Sekunde 0:15.

KI-Musik

Musik spielt eine wichtige Rolle für die Atmosphäre einer Veranstaltung. Daher haben wir uns für mubert entschieden, ein generatives KI-Start-up, das es uns ermöglichte, Musik in verschiedenen Genres wie „Minimal House“ zu erstellen und zu streamen, und so für eine progressive Stimmung über den gesamten Abend sorgte. Nach dem Hauptgang übernahm ein DJ und begleitete unsere Gäste durch die Nacht. 💃🍸

KI-Kunst

Im gesamten Restaurant platzierten wir KI-generierte Kunstwerke des lokalen KI-Künstlers Vladimir Alexeev (a.k.a. “Merzmensch”). Hier sind einige Beispiele:

KI-Spielplatz

Als interaktives Element für die Gäste haben wir eine kleine Web-App erstellt, die den Vornamen einer Person nimmt und in ein Gericht verwandelt, inklusive einer Begründung, warum dieser Name perfekt zum Gericht passt. Probiert es hier gerne selbst aus: Playground

Launch

the byte wurde offiziell auf der Pressekonferenz des S-O-U-P-Festivals Anfang Mai 2023 angekündigt. Wir starteten auch zusätzliche Marketingaktivitäten über soziale Medien und unser Netzwerk von Freunden und Familie. Als Ergebnis war the byte drei Tage lang vollständig ausgebucht und wir erhielten breite Medienberichterstattung in verschiedenen Gastronomie-Magazinen und der Tagespresse. Die Gäste waren (meistens) von unseren KI-Kreationen begeistert und wir erhielten Anfragen von anderen europäischen Restaurants und Unternehmen, die the byte exklusiv als Erlebnis für ihre Mitarbeiter:innen buchen möchten. 🤩 Nailed it!

Fazit und nächste Schritte

Die Erschaffung von the byte zusammen mit Jonathan und James war eine herausragende Erfahrung. Es hat mich weiter darin bestärkt, dass KI nicht nur unsere Wirtschaft, sondern alle Aspekte unseres täglichen Lebens transformieren wird. Es gibt ein riesiges Potenzial an der Schnittstelle von Kreativität, Kultur und KI, das derzeit erschlossen wird.

Wir möchten the byte definitiv in Frankfurt weiterführen und haben bereits Anfragen aus anderen Städten in Europa erhalten. Außerdem denken James, Jonathan und ich bereits über neue Möglichkeiten nach, KI in Kultur und Gesellschaft einzubringen.  Stay tuned! 😏

the byte war nicht nur ein Restaurant, sondern ein fesselndes Erlebnis. Wir wollten etwas erschaffen, was noch nie zuvor gemacht wurde, und das haben wir in nur acht Wochen erreicht. Das ist die Inspiration, die ich euch heute mitgeben möchte:

Neue Dinge auszuprobieren, die einen aus der Komfortzone herausholen, ist die ultimative Quelle des Wachstums.  Ihr wisst nie, wozu ihr fähig seid, bis ihr es versucht. Also, geht raus und probiert etwas Neues aus, wie den Aufbau eines KI-gesteuerten Pop-up-Restaurants. Wer weiß, vielleicht überrascht ihr euch selbst.  Bon apétit!

Impressionen

Media

FAZ: https://www.faz.net/aktuell/rhein-main/pop-up-resturant-the-byte-wenn-chatgpt-das-menue-schreibt-18906154.html

Genuss Magazin: https://www.genussmagazin-frankfurt.de/gastro_news/Kuechengefluester-26/Interview-James-Ardinast-KI-ist-die-Zukunft-40784.html

Frankfurt Tipp: https://www.frankfurt-tipp.de/ffm-aktuell/s/ugc/deutschlands-erstes-ai-restaurant-the-byte-in-frankfurt.html

Foodservice: https://www.food-service.de/maerkte/news/the-byte-erstes-ki-restaurant-vor-dem-start-55899?crefresh=1 Sebastian Heinz

statworx auf der Big Data & AI World

Von Medien über Politik bis hin zu großen und kleinen Unternehmen – Künstliche Intelligenz hat im Jahr 2023 endlich den Sprung in den Mainstream geschafft. Umso mehr haben wir uns gefreut, dieses Jahr wieder auf einer der größten KI-Messen im DACH-Raum, der „Big Data & AI World“, in unserer Heimatstadt Frankfurt vertreten zu sein. Bei dieser Veranstaltung standen die Themen Big Data und künstliche Intelligenz im Mittelpunkt; ein perfektes Umfeld für uns als KI-Spezialist:innen. Doch wir kamen nicht nur zum Erkunden der Messe und zum Knüpfen von Kontakten: Auch an unserem eigenen Stand konnten Besucher:innen ein faszinierendes Pac-Man-Spiel mit einem besonderen Kniff erleben. In diesem Beitrag möchten wir Ihnen gerne einen Rückblick auf diese aufregende Messe geben.

Abb. 1: unser Messestand

KI zum Anfassen

Unsere Pac-Man Challenge, bei der wir den Standbesucher:innen die faszinierende Welt der künstlichen Intelligenz hautnah präsentierten, stellte sich als wahrer Publikumsliebling heraus. Mit unserem Spielautomaten konnte man sich nicht nur an dem zeitlosen Retro-Spiel versuchen, sondern auch die beeindruckende Leistungsfähigkeit moderner KI-Technologie erleben. So setzten wir nämlich eine KI ein, um die Emotionen in der Mimik der Spieler:innen in Echtzeit zu analysieren. Diese Kombination von modernster Technologie mit einem interaktiven Spielerlebnis kam hervorragend an.

Unsere KI-Lösung zur lief auf einem MacBook mit leistungsstarkem M1-Chip, was die Bildverarbeitung in Echtzeit und flüssige Grafikdarstellung ermöglichte. Die Gesichtserkennung der Spieler:innen wurde durch einen smarten Algorithmus ermöglicht, der sofort alle Gesichter im Video ermittelte. Anschließend wurde das Gesicht, das sich am nächsten an der Kamera befand, ausgewählt und fokussiert. So konnte auch bei einer langen Schlange vor dem Automaten das korrekte Gesicht analysiert werden. Eine weitere Schicht der Verarbeitung erfolgte durch ein Convolutional Neural Network (CNN), speziell das ResNet18-Modell, welches die Emotionen der Spieler:innen erkannte.

Unser Backend fungierte als Multimedia-Server, der den Webcam-Stream, die Gesichtserkennungsalgorithmen und die Emotionserkennung verarbeitete. Es kann sowohl vor Ort auf einem MacBook betrieben werden wie auch remote in der Cloud. Dank dieser Flexibilität konnten wir ein ansprechendes Frontend entwickeln, um die Ergebnisse der Echtzeitanalyse anschaulich darzustellen. Zusätzlich wurden nach jedem Spiel die Resultate mittels E-Mail an die Spieler:innen versandt, indem wir das Modell mit unserem CRM-System verknüpft haben. Für die E-Mail haben wir eine digitale Postkarte erstellt, welche neben Screenshots der intensivsten Emotionen auch eine umfassende Auswertung bereitstellt.

Abb. 2: Besucherin am Pac-Man Spieleautomaten

Künstliche Intelligenz, echte Emotionen

Die Pac-Man Challenge mit Emotionsanalyse sorgte bei den Messebesucher:innen für Begeisterung. Neben der besonderen Spielerfahrung auf unserem Retro-Automaten erhielten die Teilnehmenden nämlich auch einen Einblick in ihre eigenen Emotionen während des Spielens. So konnten die Spieler:innen detailliert ablesen, welche Emotion zu welchem Zeitpunkt im Spiel am präsentesten war. Allzu oft ließ sich ein kleines Aufkommen von Wut oder Traurigkeit messen, wenn Pac-Man unfreiwillig in den digitalen Tod geschickt wurde.

Nicht alle Spieler:innen zeigten jedoch die gleiche Reaktion auf das Spiel. Während manche ein Wechselbad der Gefühle zu erleben schienen, setzten andere ein eisernes Pokerface auf, dem selbst die KI nur einen neutralen Ausdruck entlocken konnte. Somit entstanden viele spannende Gespräche darüber, wie die gemessenen Emotionen zum Erlebnis der Spieler:innen passten. Es bedurfte keiner KI, um zu erkennen, dass die Besucher:innen unseren Stand mit positiven Emotionen verließen – nicht zuletzt in Hoffnung auf den Gewinn der originalen NES-Konsole, die wir unter allen Teilnehmenden verlosten.

Abb. 3: digitale Postkarte

Die KI-Community im Aufbruch

Die „Big Data & AI World“ war nicht nur für uns als Unternehmen eine bereichernde Erfahrung, sondern auch ein Spiegelbild des Aufbruchs, den die KI-Branche derzeit erlebt. Die Messe bot eine Plattform für Fachleute, Innovator:innen und Enthusiast:innen, um sich über die neuesten Entwicklungen auszutauschen und gemeinsam die Zukunft der künstlichen Intelligenz voranzutreiben.

In den Gängen und Ausstellungsbereichen spürte man die Energie und Aufregung, die von den verschiedenen Unternehmen und Start-ups ausgingen. Es war inspirierend zu sehen, wie KI-Technologien in den unterschiedlichsten Bereichen angewendet werden – von der Medizin bis zur Logistik, von der Automobilindustrie bis zur Unterhaltung. Mit all diesen Bereichen haben wir bei statworx bereits Projekterfahrung sammeln können, was die Basis für spannende Fachgespräche mit anderen Aussteller:innen bildete.

Unser Fazit

Die Teilnahme an der „Big Data & AI World “ war für uns als KI-Beratung ein großer Erfolg. Die Pac-Man Challenge mit Emotionsanalyse zog zahlreiche Besucher:innen an und bereitete allen Teilnehmenden viel Freude. Es war deutlich erkennbar, dass nicht die KI als solche, sondern insbesondere deren Einbindung in eine anregende Spielerfahrung bei vielen einen bleibenden Eindruck hinterließ.

Insgesamt war die Messe nicht nur eine Gelegenheit, unsere KI-Lösungen zu präsentieren, sondern auch ein Treffpunkt für die gesamte KI-Community. Der Aufbruch und die Energie in der Branche waren deutlich spürbar. Auch der Austausch von Ideen, Diskussionen über Herausforderungen und das Aufbauen neuer Kontakte war inspirierend und vielversprechend für die Zukunft der deutschen KI-Branche. Max Hilsdorf

Der Europäische Rat hat vergangenen Dezember ein Dossier veröffentlicht, welches den vorläufigen Standpunkt des Rates zum Gesetzesentwurf des so genannten „AI-Act“ darstellt. Dieses neue Gesetz soll künstliche Intelligenz regulieren und wird somit zum Gamechanger für die gesamte Tech-Branche. Im Folgenden haben wir die wichtigsten Informationen aus dem Dossier zusammengetragen, welches zum Zeitpunkt der Veröffentlichung den aktuellen Stand des geplanten AI-Act beschreibt.

Ein rechtlicher Rahmen für KI

Künstliche Intelligenz besitzt enormes Potential, unser aller Leben zu verbessern und zu erleichtern. Zum Beispiel unterstützen KI-Algorithmen schon heute die Krebsfrüherkennung oder übersetzen Gebärdensprache in Echtzeit und beseitigen dadurch Sprachbarrieren. Doch neben den positiven Effekten gibt es auch Risiken, wie die neusten Deepfakes von Papst Franziskus oder der Cambridge Analytica Skandal verdeutlichen.

Um Risiken künstlicher Intelligenz zu mindern, erarbeitet die Europäische Union derzeit einen Gesetzesentwurf zur Regulierung künstlicher Intelligenz. Mit diesem möchte die EU Verbraucher:innen schützen und den ethisch vertretbaren Einsatz von künstlicher Intelligenz sicherstellen. Der sogenannte „AI-Act“ befindet sich zwar noch im Gesetzgebungsprozess, wird jedoch voraussichtlich noch 2023 – vor Ende der aktuellen Legislaturperiode – verabschiedet. Unternehmen haben anschließend zwei Jahre Zeit, die rechtlich bindenden Auflagen umzusetzen. Verstöße dagegen werden mit Bußgeldern von bis zu 6% des weltweiten Jahresumsatzes bzw. maximal 30.000.000 € geahndet. Deshalb sollten Unternehmen sich schon jetzt mit den kommenden rechtlichen Anforderungen auseinandersetzen.

Gesetzgebung mit globaler Wirkung

Der geplante AI-Act basiert auf dem „Marktortprinzip“, wodurch nicht nur europäische Unternehmen von der Gesetzesänderung belangt werden. Somit sind alle Unternehmen vom betroffen, die KI-Systeme auf dem europäischen Markt anbieten oder auch zur internen Nutzung innerhalb der EU betreiben – bis auf wenige Ausnahmen. Private Nutzung von KI bleibt bisher von der Verordnung unangetastet.

Welche KI-Systeme sind betroffen?

Die Definition von KI entscheidet, welche Systeme vom AI-Act betroffen sein werden. Daher wird die KI-Definition des AI-Acts in Politik, Wirtschaft und Gesellschaft seit geraumer Zeit kontrovers diskutiert. Die initiale Definition war so breit gefasst, dass auch viele „normale“ Software-Systeme betroffen gewesen wären. Der aktuelle Vorschlag definiert KI als jedes System, das durch Machine Learning oder logik- und wissensbasierten Ansätzen entwickelt wurde. Ob diese Definition letztendlich auch verabschiedet wird, gilt es abzuwarten.

7 Prinzipien für vertrauenswürdige KI

Die „sieben Prinzipien für vertrauenswürdige KI“ stellen die wichtigste inhaltliche Grundlage des AI-Acts dar. Ein Gremium von Expert:innen aus Forschung, Digitalwirtschaft und Verbänden hat diese im Auftrag der Europäischen Kommission entwickelt. Sie umfassen nicht nur technische Aspekte, sondern auch soziale und ethische Faktoren, anhand derer die Vertrauenswürdigkeit eines KI-Systems eingeordnet werden kann entlang derer eine KI beurteilt werden kann:

  1. Menschliches Handeln & Aufsicht: Entscheidungsfindung soll unterstützt werden, ohne die menschliche Autonomie zu untergraben.
  2. Technische Robustheit & Sicherheit: Genauigkeit, Zuverlässigkeit und Sicherheit muss präventiv sichergestellt sein.
  3. Datenschutz & Data Governance: Umgang mit Daten muss rechtssicher und geschützt erfolgen.
  4. Transparenz: Interaktion mit KI muss deutlich kommuniziert werden, ebenso die Limitationen und Grenzen dieser.
  5. Vielfalt, Nicht-Diskriminierung & Fairness: Vermeidung unfairer Verzerrungen muss über den gesamten KI-Lebenszyklus sichergestellt werden.
  6. Ökologisches & gesellschaftliches Wohlergehen: KI-Lösungen sollten sich möglichst positiv auf die Umwelt auswirken.
  7. Rechenschaftspflicht: Verantwortlichkeiten für die Entwicklung, Nutzung und Instandhaltung von KI-Systemen müssen definiert sein.

Auf Basis dieser Grundsätze wurde der risikobasierte Ansatz des AI-Acts entwickelt, mit welchem KI-Systeme in eine von vier Risikoklassen eingeordnet werden können: niedriges, limitiertes, hohes und inakzeptables Risiko.

Vier Risikoklassen für vertrauenswürdige KI

Die Risikoklasse eines KI-Systems gibt an, wie stark ein KI-System die Prinzipien vertrauenswürdiger KI bedroht und welche rechtlichen Auflagen das System erfüllen muss – sofern das System grundlegend zulässig ist. Denn zukünftig sind auf dem europäischen Markt nicht alle KI-Systeme willkommen. Beispielsweise werden die meisten „Social Scoring“-Techniken als „inakzeptabel“ eingeschätzt und im Zuge des neuen Gesetzes verboten.

Für die anderen drei Risiko-Klassen gilt die Faustregel: Je höher das Risiko eines KI-Systems, desto höher die rechtlichen Anforderungen an dieses. Die meisten Anforderungen werden Unternehmen erfüllen müssen, welche Hochrisiko-Systeme anbieten oder betreiben. Als solche gelten z.B. KI, die für den Betrieb kritischer (digitaler) Infrastruktur genutzt oder in medizinischen Geräten eingesetzt wird. Um diese auf den Markt zu bringen, müssen Unternehmen hohe Qualitätsstandards bei den genutzten Daten beachten, ein Risikomanagement einrichten, eine CE-Kennzeichnung anbringen und vieles mehr.

KI-Systeme der Klasse „limitiertes Risiko“ unterliegen Informations- und Transparenzpflichten. Demnach müssen Unternehmen Nutzer:innen von Chatbots, Emotionserkennungssystemen oder Deepfakes über den Einsatz und Nutzung künstlicher Intelligenz informieren. Predictive Maintenance oder Spamfilter sind zwei Beispiele für KI-Systeme, welche in die niedrigste Risiko-Klasse „geringes Risiko“ fallen. Unternehmen, die ausschließlich solche KI-Lösungen anbieten oder nutzen, werden kaum von dem kommenden AI-Act betroffen sein. Für diese Anwendungen sind nämlich bisher keine rechtlichen Auflagen vorgesehen.

Was Unternehmen jetzt tun können

Auch wenn sich der AI-Act noch in der Gesetzgebung befindet, sollten Unternehmen bereits jetzt aktiv werden. Ein erster Schritt stellt die Abklärung der Betroffenheit durch den AI-Act dar. Um Sie dabei zu unterstützen, haben wir den AI-Act Quick Check entwickelt. Mit diesem kostenlosen Tool können Sie KI-Systeme kostenfrei und schnell einer Risiko-Klasse zugeordnet und Anforderungen an das System abgeleitet werden. Nicht zuletzt kann auf dieser Basis abgeschätzt werden, wie umfangreich die Realisierung des AI-Acts im eigenen Unternehmen wird und erste Maßnahmen ergriffen werden.

AI Act Tool     AI Act Fact Sheet

 

Profitieren auch Sie von unserer Expertise!

Selbstverständlich unterstützen wir Sie gerne bei der Evaluation und Lösungen unternehmens­spezifischen Herausforderungen rund um den AI-Act. Sprechen Sie uns dafür gerne an!

     

    Links & Quellen:

    Julia Rettig

    Experimente zur Bilderkennung durch die Genderbrille

    Im ersten Teil unserer Serie haben wir uns mit einer einfachen Frage beschäftigt: Wie würde sich unser Aussehen verändern, wenn wir Fotos von uns entlang des Genderspektrums bewegen würden? Aus diesen Experimenten entstand die Idee, genderneutrale Gesichtsbilder aus vorhandenen Fotos zu erstellen. Gibt es einen Punkt in der Mitte, an dem wir unser „Gender”, unser Geschlecht, als neutral wahrnehmen? Und außerdem: Wann würde eine KI ein Gesicht als genderneutral wahrnehmen?

    Bewusstsein für die Technologie, die wir täglich nutzen

    Die Bilderkennung ist ein wichtiges Thema. Diese Technologie entwickelt sich täglich weiter und wird in einer Vielzahl von Anwendungen eingesetzt – oft ohne, dass Benutzer:innen wissen, wie die Technologie funktioniert. Ein aktuelles Beispiel ist der „Bold-Glamour-Filter“ auf TikTok. Bei Anwendung mit weiblich aussehenden Gesichtern ändern sich Gesichtsmerkmale und Make-up drastisch. Im Gegensatz dazu ändern sich männlich aussehende Gesichter deutlich weniger. Dieser Unterschied lässt vermuten, dass die KI hinter den Filtern mit unausgewogenen Daten entwickelt wurde. Die Technologie dahinter basiert höchstwahrscheinlich auf sogenannten „General Adversarial Networks“ (GANs), also dieselbe Art von KI, die wir in diesem Artikel untersuchen.

    Als eine Gesellschaft bewusster Bürger:innen sollten wir alle die Technologie verstehen, die solche Anwendungen ermöglicht. Um das Bewusstsein dafür zu schärfen, untersuchen wir die Erzeugung und Klassifizierung von Gesichtsbildern durch eine genderspezifische Brille. Anstatt mehrere Schritte entlang des Spektrums zu erforschen, besteht unser Ziel dieses Mal darin, geschlechtsneutrale Versionen von Gesichtern zu erzeugen.

    Wie man genderneutrale Gesichter mit StyleGAN generiert

    Ein Deep-Learning-Modell zur Geschlechtsidentifizierung

    Es ist alles andere als trivial, einen Punkt zu bestimmen, ab dem das Gender eines Gesichts als neutral gilt. Nachdem wir uns auf unsere eigene (natürlich nicht unvoreingenommene) Interpretation von Gender in Gesichtern verlassen hatten, wurde uns schnell klar, dass wir eine konsistente und weniger subjektive Lösung benötigen. Als KI-Spezialist:innen dachten wir sofort an datengetriebene Ansätze. Ein solcher Ansatz kann mit einem auf Deep Learning basierenden Bildklassifikator umgesetzt werden.

    Solche Klassifikationsmodelle werden in der Regel auf großen Datensätzen mit gekennzeichneten Bildern trainiert, um zwischen festgelegten Kategorien zu unterscheiden. Bei der Klassifizierung von Gesichtern sind Kategorien wie Gender (in der Regel nur weiblich und männlich) und ethnische Zugehörigkeit übliche Kategorien. In der Praxis werden solche Modelle oft wegen ihres Missbrauchspotenzials und ihrer Unfairness kritisiert. Bevor wir Beispiele für diese Probleme erörtern, werden wir uns zunächst auf unser weniger kritisches Szenario konzentrieren. In unserem Anwendungsfall ermöglichen es uns Klassifikationsmodelle, die Erstellung von genderneutralen Portraits vollständig zu automatisieren. Um dies zu erreichen, können wir folgendermaßen eine Lösung implementieren:

    Wir verwenden einen GAN-basierten Ansatz, um Portraits zu erzeugen, die auf einem gegebenen Inputbild basieren. Dazu verwenden wir die latenten Richtungen des gelernten Genderspektrums des GAN, um das Bild in Richtung eines eher weiblichen oder männlichen Aussehens zu bewegen. Eine detaillierte Untersuchung dieses Prozesses ist im ersten Teil unserer Serie zu finden. Aufbauend auf diesem Ansatz wollen wir uns auf die Verwendung eines binären Gender-Klassifikators konzentrieren, um die Suche nach einem genderneutralen Aussehen vollständig zu automatisieren.

    Dazu verwenden wir den von Furkan Gulsen entwickelten Klassifikator, um das Gender der GAN-generierten Version unseres Eingabebildes zu erraten. Der Klassifikator gibt einen Wert zwischen Null und Eins aus, um die Wahrscheinlichkeit darzustellen, dass das Bild ein weibliches bzw. männliches Gesicht darstellt. Dieser Wert sagt uns, in welche Richtung (eher männlich oder eher weiblich) wir uns bewegen müssen, um uns einer geschlechtsneutralen Version des Bildes anzunähern. Nachdem wir einen kleinen Schritt in die ermittelte Richtung gemacht haben, wiederholen wir den Vorgang, bis wir zu einem Punkt gelangen, an dem der Klassifikator das Gender des Gesichts nicht mehr sicher bestimmen kann. Dieser Punkt ist erreicht, sobald der Klassifikator die männliche als auch die weibliche Kategorie für gleich wahrscheinlich hält.

    Die folgenden Beispiele illustrieren diesen Status und repräsentieren unsere Ergebnisse. Auf der linken Seite ist das Originalbild zu sehen. Rechts sehen wir die genderneutrale Version des Portraits, welches der Klassifikator mit gleicher Wahrscheinlichkeit als männlich oder weiblich interpretiert. Wir haben versucht, das Experiment für Mitglieder verschiedener Ethnien und Altersgruppen zu wiederholen.

    Resultat: Originalportrait und KI-generierter, genderneutraler Output

    Bist du neugierig, wie der Code funktioniert oder wie du selbst aussehen würdest? Du kannst den Code, mit dem wir diese Bildpaare erzeugt haben, unter diesem Link ausprobieren. Drücke einfach nacheinander auf jeden Play-Button und warte, bis du das grüne Häkchen siehst.

    Hinweis: Wir haben ein bestehendes GAN, einen Bild-Encoder und einen Gesichter-Klassifikator verwendet, um einen genderneutralen Output zu generieren. Eine detaillierte Untersuchung dieses Prozesses ist hier zu finden.

    Wahrgenommene Genderneutralität scheint eine Folge von gemischten Gesichtszügen zu sein

    Oben sehen wir die Originalportraits verschiedener Personen auf der linken Seite und rechts ihr genderneutrales Gegenstück – von uns erstellt. Subjektiv fühlen sich einige „neutraler“ an als andere. In einigen der Bilder bleiben besonders stereotype Gendermerkmale erhalten, wie z. B. Make-up bei den Frauen und eine eckige Kieferpartie bei den Männern. Als besonders überzeugend empfinden wir die Ergebnisse von Bild 2 und Bild 4. Bei diesen Bildpaaren ist es nicht nur schwieriger, die ursprüngliche Person zurückzuverfolgen, sondern es ist auch viel schwieriger zu entscheiden, ob das Gesicht eher männlich oder weiblich wirkt. Man könnte argumentieren, dass die genderneutralen Gesichter eine ausgewogene, abgeschwächte Mischung aus männlichen und weiblichen Gesichtszügen besitzen. Wenn man beispielsweise Teile der genderneutralen Version von Bild 2 herausgreift und sich darauf konzentriert, erscheinen die Augen- und Mundpartien eher weiblich, während die Kieferlinie und die Gesichtsform eher männlich wirken. Bei der genderneutralen Version von Bild 3 mag das Gesicht allein recht neutral aussehen, aber die kurzen Haare lenken davon ab, so dass der Gesamteindruck in Richtung männlich geht.

    Die Trainingsdaten für die Bilderzeugung wurden heftig kritisiert, weil sie nicht repräsentativ für die bestehende Bevölkerung sind, insbesondere was die Unterrepräsentation verschiedener Ethnien und Gender betrifft. Trotz „Cherry Picking“ und einer begrenzten Auswahl an Beispielen sind wir der Meinung, dass unser Ansatz in den obigen Ergebnissen keine schlechteren Beispiele für Frauen oder People of Color hervorgebracht hat.

    Gesellschaftliche Bedeutung solcher Modelle

    Wenn wir über das Thema der Genderwahrnehmung sprechen, sollten wir nicht vergessen, dass Menschen sich einem anderen Gender zugehörig fühlen können als ihrem biologischen Geschlecht. In diesem Artikel verwenden wir Modelle zur Genderklassifizierung und interpretieren die Ergebnisse. Unsere Einschätzungen werden jedoch wahrscheinlich von der Wahrnehmung anderer Menschen abweichen. Dies ist eine wesentliche Überlegung bei der Anwendung solcher Bildklassifizierungsmodelle und eine, die wir als Gesellschaft diskutieren müssen.

    Wie kann Technologie alle gleich behandeln?

    Eine Studie des Guardian hat ergeben, dass Bilder von Frauen, die in denselben Situationen wie Männer dargestellt werden, von den KI-Klassifizierungsdiensten von Microsoft, Google und AWS mit größerer Wahrscheinlichkeit als anzüglich eingestuft werden. Die Ergebnisse dieser Untersuchung sind zwar schockierend, aber nicht überraschend. Damit ein Klassifizierungsalgorithmus lernen kann, was anstößige Inhalte sind, müssen Trainingsdaten von Bild- und Label-Paaren erstellt werden. Diese Aufgabe übernehmen Menschen. Sie werden durch ihre eigene soziale Voreingenommenheit beeinflusst und assoziieren beispielsweise Darstellungen von Frauen schneller mit Sexualität. Außerdem sind Kriterien wie „Anzüglichkeit“ schwer zu quantifizieren, geschweige denn zu definieren.

    Auch wenn diese Modelle nicht ausdrücklich auf die Unterscheidung zwischen den Geschlechtern trainiert werden, besteht kaum ein Zweifel daran, dass sie unerwünschte Vorurteile gegenüber Frauen verbreiten, die aus ihren Trainingsdaten stammen. Ebenso können gesellschaftliche Vorurteile, die Männer betreffen, an KI-Modelle weitergegeben werden. Bei der Anwendung auf Millionen von Online-Bildern von Menschen wird das Problem der Geschlechterungleichheit noch verstärkt.

    Verwendung in der Strafverfolgung wirft Probleme auf

    Ein weiteres Szenario für den Missbrauch von Bildklassifizierungstechnologie besteht in der Strafverfolgung. Fehlklassifizierungen sind problematisch und werden in einem Artikel von The Independent als weit verbreitet dargestellt. Als die Erkennungssoftware von Amazon in einer Studie aus dem Jahr 2018 mit einem Konfidenzniveau von 80 % verwendet wurde, ordnete die Software 105 von 1959 Teilnehmer:innen fälschlicherweise Fahndungsfotos von Verbrecher:innen zu. Angesichts der oben beschriebenen Probleme mit der Verarbeitung von Bildern, auf denen Männer und Frauen abgebildet sind, könnte man sich ein ernüchterndes Szenario vorstellen, wenn man das Verhalten von Frauen im öffentlichen Raum beurteilt. Wenn Männer und Frauen für dieselben Handlungen oder Positionen unterschiedlich beurteilt werden, würde dies das Recht aller auf Gleichbehandlung vor dem Gesetz beeinträchtigen. Der Bayerische Rundfunk hat eine interaktive Seite veröffentlicht, auf der die unterschiedlichen Einstufungen der KI-Klassifizierungsdienste mit der eigenen Einschätzung verglichen werden können.

    Verwendung genderneutraler Bilder zur Vermeidung von Vorurteilen

    Neben den positiven gesellschaftlichen Potenzialen der Bildklassifizierung wollen wir auch einige mögliche praktische Anwendungen ansprechen, die sich aus der Möglichkeit ergeben, mehr als nur zwei Gender abzudecken. Eine Anwendung, die uns in den Sinn kam, ist die Verwendung von „genderlosen“ Bildern, um Vorurteile zu vermeiden. Ein solcher Filter würde einen Verlust an Individualität bedeuten, sodass er nur in Kontexten anwendbar wäre, in denen der Nutzen der Verringerung von Vorurteilen die Kosten dieses Verlusts überwiegt.

    Vision einer Browsererweiterung für den Bewerbungsprozess

    Die Personalauswahl könnte ein Bereich sein, in dem genderneutrale Bilder zu weniger genderbasierter Diskriminierung führen könnten. Vorbei sind die Zeiten der gesichtslosen Bewerbungen: Wenn ein LinkedIn-Profil ein Profilbild hat, ist die Wahrscheinlichkeit, dass es angesehen wird, 14-mal höher . Bei der Prüfung von Bewerbungsprofilen sollten Personalverantwortliche idealerweise frei von unbewussten, ungewollten genderspezifischen Vorurteilen sein. Die menschliche Natur verhindert dies. So könnte man sich eine Browsererweiterung vorstellen, die eine genderneutrale Version von Profilfotos auf professionellen Social-Networking-Seiten wie LinkedIn oder Xing generiert. Dies könnte zu mehr Gleichheit und Neutralität im Einstellungsprozess führen, bei dem nur die Fähigkeiten und der Charakter zählen sollten, nicht aber das Geschlecht – oder das Aussehen (ein schönes Privileg).

    Schlusswort

    Wir haben uns zum Ziel gesetzt, automatisch genderneutrale Versionen aus einem beliebigen Portrait zu erzeugen.

    Unsere Implementierung automatisiert in der Tat die Erstellung von genderneutralen Gesichtern. Wir haben ein bestehendes GAN, einen Bild-Encoder und einen Gesichter-Klassifikator verwendet. Unsere Experimente mit den Portraits oben zeigen, dass der Ansatz in vielen Fällen gut funktioniert und realistisch aussehende Gesichtsbilder erzeugt, die dem Eingabebild deutlich ähneln und dabei genderneutral bleiben.

    In einigen Fällen haben wir jedoch festgestellt, dass die vermeintlich neutralen Bilder Artefakte von technischen Störungen enthalten oder noch ihr erkennbares Gender haben. Diese Einschränkungen ergeben sich wahrscheinlich aus der Beschaffenheit des latenten Raums des GANs oder aus dem Mangel an künstlich erzeugten Bildern in den Trainingsdaten des Klassifikators. Wir sind zuversichtlich, dass weitere Arbeiten die meisten dieser Probleme für reale Anwendungen lösen können.

    Die Fähigkeit der Gesellschaft, eine fundierte Diskussion über Fortschritte in der KI zu führen, ist von entscheidender Bedeutung

    Bildklassifizierung hat weitreichende Folgen und sollte von der Gesellschaft und nicht nur von einigen wenigen Expert:innen bewertet und diskutiert werden. Jeder Bildklassifikationsdienst, der dazu dient, Menschen in Kategorien einzuteilen, sollte genau geprüft werden. Was vermieden werden muss, ist, dass Mitglieder der Gesellschaft zu Schaden kommen. Die Einführung eines verantwortungsvollen Umgangs mit solchen Systemen, die Kontrolle und die ständige Bewertung sind unerlässlich. Eine weitere Lösung könnte darin bestehen, Strukturen für die Begründung von Entscheidungen zu schaffen und dabei die Best Practices von Explainable AI zu nutzen, um darzulegen, warum bestimmte Entscheidungen getroffen wurden. Als Unternehmen im Bereich der KI sehen wir bei statworx unsere KI-Prinzipien als Wegweiser.

     

    Bildnachweise:

    AdobeStock 210526825Wayhome Studio
    AdobeStock 243124072Damir Khabirov
    AdobeStock 387860637 insta_photos
    AdobeStock 395297652Nattakorn
    AdobeStock 480057743Chris
    AdobeStock 573362719Xavier Lorenzo

    AdobeStock 546222209 Rrose Selavy

    Isabel Hermes, Alexander Müller

    Einführung

    Forecasts sind in vielen Branchen von zentraler Bedeutung. Ob es darum geht, den Verbrauch von Ressourcen zu prognostizieren, die Liquidität eines Unternehmens abzuschätzen oder den Absatz von Produkten im Einzelhandel vorherzusagen – Forecasts sind ein unverzichtbares Instrument für erfolgreiche Entscheidungen. Obwohl sie so wichtig sind, basieren viele Forecasts immer noch primär auf den Vorerfahrungen und der Intuition von Expert:innen. Das erschwert eine Automatisierung der relevanten Prozesse, eine potenzielle Skalierung und damit einhergehend eine möglichst effiziente Unterstützung. Zudem können Expert:innen aufgrund ihrer Erfahrungen und Perspektiven voreingenommen sein oder möglicherweise nicht über alle relevanten Informationen verfügen, die für eine genaue Vorhersage erforderlich sind.

    Diese Gründe führen dazu, dass datengetriebene Forecasts in den letzten Jahren immer mehr an Bedeutung gewonnen haben und die Nachfrage nach solchen Prognosen ist entsprechend stark.

    Bei statworx haben wir bereits eine Vielzahl an Projekten im Bereich Forecasting erfolgreich umgesetzt. Dadurch haben wir uns vielen Herausforderungen gestellt und uns mit zahlreichen branchenspezifischen Use Cases vertraut gemacht. Eine unserer internen Arbeitsgruppen, das Forecasting Cluster, begeistert sich besonders für die Welt des Forecastings und bildet sich kontinuierlich in diesem Bereich weiter.

    Auf Basis unserer gesammelten Erfahrungen möchten wir diese nun in einem benutzerfreundlichen Tool vereinen, welches je nach Datenlage und Anforderungen jedem ermöglicht, erste Einschätzungen zu spezifischen Forecasting Use Cases zu erhalten. Sowohl Kunden als auch Mitarbeitende sollen in der Lage sein, das Tool schnell und einfach zu nutzen, um eine methodische Empfehlung zu erhalten. Unser langfristiges Ziel ist es, das Tool öffentlich zugänglich zu machen. Jedoch testen wir es zunächst intern, um seine Funktionalität und Nützlichkeit zu optimieren. Dabei legen wir besonderen Wert darauf, dass das Tool intuitiv bedienbar ist und leicht verständliche Outputs liefert.

    Obwohl sich unser Recommender-Tool derzeit noch in der Entwicklungsphase befindet, möchten wir einen ersten spannenden Einblick geben.

    Häufige Herausforderungen

    Modellauswahl

    Im Bereich Forecasting gibt es verschiedene Modellierungsansätze. Wir differenzieren dabei zwischen drei zentralen Ansätzen:

    1. Zeitreihenmodelle
    2. Baumbasierte Modelle
    3. Deep Learning Modelle

    Es gibt viele Kriterien, die man bei der Modellauswahl heranziehen kann. Wenn es sich um univariate Zeitreihen handelt, die eine starke Saisonalität und Trends aufweisen, sind klassische Zeitreihenmodelle wie (S)ARIMA und ETS sinnvoll. Handelt es sich hingegen um multivariate Zeitreihen mit potenziell komplexen Zusammenhängen und großen Datenmengen, stellen Deep Learning Modelle eine gute Wahl dar. Baumbasierte Modelle wie LightGBM bieten im Vergleich zu Zeitreihenmodellen eine größere Flexibilität, eignen sich aufgrund ihrer Architektur gut für das Thema Erklärbarkeit und haben im Vergleich zu Deep Learning Modellen einen tendenziell geringeren Rechenaufwand.

    Saisonalität

    Saisonalität stellt wiederkehrende Muster in einer Zeitreihe dar, die in regelmäßigen Abständen auftreten (z.B.  täglich, wöchentlich, monatlich oder jährlich). Die Einbeziehung der Saisonalität in der Modellierung ist wichtig, um diese regelmäßigen Muster zu erfassen und die Genauigkeit der Prognosen zu verbessern. Mit Zeitreihenmodellen wie SARIMA, ETS oder TBATS kann die Saisonalität explizit berücksichtigt werden. Für baumbasierte Modelle wie LightGBM kann die Saisonalität nur über die Erstellung entsprechender Features berücksichtigt werden. So können Dummies für die relevanten Saisonalitäten gebildet werden. Eine Möglichkeit Saisonalität in Deep Learning-Modellen explizit zu berücksichtigen, besteht in der Verwendung von Sinus- und Cosinus-Funktionen. Ebenso ist es möglich die Saisonalitätskomponente aus der Zeitreihe zu entfernen. Dazu wird zuerst die Saisonalität entfernt und anschließend eine Modellierung auf der desaisonalisierten Zeitreihe durchgeführt. Die daraus resultierenden Prognosen werden dann mit der Saisonalität ergänzt, indem die genutzte Methodik für die Desaisonalisierung entsprechend angewendet wird. Allerdings erhöht dieser Prozess die Komplexität, was nicht immer erwünscht ist.

    Hierarchische Daten

    Besonders im Bereich Retail liegen häufig hierarchische Datenstrukturen vor, da die Produkte meist in unterschiedlicher Granularität dargestellt werden können. Hierdurch ergibt sich häufig die Anforderung, Prognosen für unterschiedliche Hierarchien zu erstellen, welche sich nicht widersprechen. Die aggregierten Prognosen müssen daher mit den disaggregierten übereinstimmen. Dabei ergeben sich verschiedene Lösungsansätze. Über Top-Down und Bottom-Up werden Prognosen auf einer Ebene erstellt und nachgelagert disaggregiert bzw. aggregiert. Mit Reconciliation-Methoden wie Optimal Reconciliation werden Prognosen auf allen Ebenen vorgenommen und anschließend abgeglichen, um eine Konsistenz über alle Ebenen zu gewährleisten.

    Cold Start

    Bei einem Cold Start besteht die Herausforderung darin Produkte zu prognostizieren, die nur wenig oder keine historischen Daten aufweisen. Im Retail Bereich handelt es sich dabei meist um Produktneueinführungen. Da aufgrund der mangelnden Historie ein Modelltraining für diese Produkte nicht möglich ist, müssen alternative Ansätze herangezogen werden. Ein klassischer Ansatz einen Cold Start durchzuführen, ist die Nutzung von Expertenwissen. Expert:innen können erste Schätzungen der Nachfrage liefern, die als Ausgangspunkt für Prognosen dienen können. Dieser Ansatz kann jedoch stark subjektiv ausfallen und lässt sich nicht skalieren. Ebenso kann auf ähnliche Produkte oder auch auf potenzielle Vorgänger-Produkte referenziert werden. Eine Gruppierung von Produkten kann beispielsweise auf Basis der Produktkategorien oder Clustering-Algorithmen wie K-Means erfolgen. Die Nutzung von Cross-Learning-Modellen, die auf Basis vieler Produkte trainiert werden, stellt eine gut skalierbare Möglichkeit dar.

    Recommender Concept

    Mit unserem Recommender Tool möchten wir die unterschiedlichen Problemstellungen berücksichtigen, um eine möglichst effiziente Entwicklung zu ermöglichen. Dabei handelt es sich um ein interaktives Tool, bei welchem man Inputs auf Basis der Zielvorstellung oder Anforderung und den vorliegenden Datencharakteristiken gibt. Ebenso kann eine Priorisierung vorgenommen werden, sodass bestimmte Anforderungen an der Lösung auch im Output entsprechend priorisiert werden. Auf Basis dieser Inputs werden methodische Empfehlungen generiert, die die Anforderungen an der Lösung in Abhängigkeit der vorliegenden Eigenschaften bestmöglich abdecken. Aktuell bestehen die Outputs aus einer rein inhaltlichen Darstellung der Empfehlungen. Dabei wird auf die zentralen Themenbereiche wie Modellauswahl, Pre-Processing und Feature Engineering mit konkreten Guidelines eingegangen. Das nachfolgende Beispiel gibt dabei einen Eindruck über die konzeptionelle Idee:

    Der hier dargestellte Output basiert auf einem realen Projekt. Für das Projekt war vor allem die Implementierung in R und die Möglichkeit einer lokalen Erklärbarkeit von zentraler Bedeutung. Zugleich wurden frequentiert neue Produkte eingeführt, welche ebenso durch die entwickelte Lösung prognostiziert werden sollten. Um dieses Ziel zu erreichen, wurden mehrere globale Modelle mit Hilfe von Catboost trainiert. Dank diesem Ansatz konnten über 200 Produkte ins Training einbezogen werden. Sogar für neu eingeführte Produkte, bei denen keine historischen Daten vorlagen, konnten Forecasts generiert werden.

    Um die Erklärbarkeit der Prognosen sicherzustellen, wurden SHAP Values verwendet. Auf diese Weise konnten die einzelnen Vorhersagen klar und deutlich anhand der genutzten Features erklärt werden.

    Zusammenfassung

    Die aktuelle Entwicklung ist darauf ausgerichtet ein Tool zu entwickeln, welches auf das Thema Forecasting optimiert ist. Durch die Nutzung wollen wir vor allem die Effizienz bei Forecasting-Projekten steigern. Durch die Kombination von gesammelten Erfahrungen und Expertise soll das Tool unter anderem für die Themen Modellierung, Pre-Processing und Feature Engineering Guidelines bieten. Es wird darauf ausgelegt sein, sowohl von Kunden als auch Mitarbeitenden verwendet zu werden, um schnelle und einfache Abschätzungen sowie methodische Empfehlungen zu erhalten. Eine erste Testversion wird zeitnah für den internen Gebrauch zur Verfügung stehen. Langfristig soll das Tool jedoch auch für externe Nutzer:innen zugänglich gemacht werden. Neben dem derzeit in der Entwicklung befindlichen technischen Output, wird auch ein weniger technischer Output verfügbar sein. Letzterer wird sich auf die wichtigsten Aspekte und deren Aufwände konzentrieren. Insbesondere die Business-Perspektive in Form von erwarteten Aufwänden und potenziellen Trade-Offs von Aufwand und Nutzen soll hierdurch abgedeckt werden.

     

     

    Profitieren auch Sie von unserer Forecasting Expertise!

    Wenn Sie Unterstützung bei der Bewältigung von vorliegenden Herausforderungen bei Forecasting Projekten benötigen oder ein Forecasting Projekt geplant ist, stehen wir gerne mit unserem Know-how und unserer Erfahrung zur Verfügung.

      Marlon Schumacher

       

      Bildnachweis:

      AdobeStock 83282923 – Mego-studio

      Kürzlich hatte ich während meiner Arbeit bei statworx ein Déjà-vu beim Thema Datenkultur. Meine Hauptaufgabe, als Head der AI Academy, besteht – kurzgefasst – darin, meinen Enthusiasmus für die Themen künstliche Intelligenz, Programmierung, Daten und Cloud Computing auf meine Kundinnen und Kunden zu übertragen. Häufig heißt das auch, meine Passion für diese Themen auf Menschen zu projizieren, die wenig technische Vorerfahrungen mitbringen und deren Herz verständlicherweise oft für andere Themen als Transformer Modelle und funktionale Programmierung schlägt.

      Dieses Spannungsfeld hat mich kürzlich sehr an etwas erinnert, was vor meiner professionellen Karriere passiert ist.

      Aller Anfang ist schwer

      Vor meiner Leidenschaft für Daten und künstliche Intelligenz war ich bereits ein sehr begeisterter (Hobby-)Musiker – eine besondere Passion galt schon immer dem Genre Death Metal (Fußnote: mit detaillierteren Genre-Beschreibungen, die hier eigentlich angebracht wären, möchte ich die interessierten Leser:innen nicht weiter behelligen 😉 ). Zur Studienzeit war ich unter anderem Sänger und Gitarrist in einer Death Metal Band. Für all diejenigen unter euch, die sich nicht gut mit Death Metal auskennen, kann es vielleicht so wirken, als ob all diese „schiefen Töne“ und das „Gegrunze” keine wirklichen Fähigkeiten erfordern – aber lasst mich euch versichern, es gehört einiges an Talent dazu und viele Leute in diesem Genre haben Jahre harter Arbeit hinter sich:

      https://youtu.be/WGnXD0DME30?t=25

      Wenn man sich diese Musik anhört oder noch besser ansieht, ist man schnell beeindruckt, wie schnell die Musiker:innen heute über ihr Gitarrengriffbrett sausen. Dabei vergisst man häufig eine Sache: Aller Anfang ist schwer. Wer von euch schon mal ein Instrument gelernt hat, kann dies sicher bestätigen. Zu Beginn ist es schwierig, sich durch standardisierte Lehrwerke zu arbeiten und die notwendige Motivation zu finden, um Techniken zu erlernen, damit man in Zukunft hoffentlich irgendwann selbst ein Musikstück spielen kann, das halbwegs erträglich klingt. So war es auch bei mir. Zu Beginn fiel es mir sehr schwer, mich für Noten, Takte und Fingerübungen zu erwärmen oder mit angemessenem Durchhaltevermögen bei der Sache zu bleiben.

      Generiert mit DALL-E. Prompt: death metal concert with view from stage to crowd, guitar in the foreground with bokeh, photorealistic style

      Selbst kreativ werden

      Am Anfang waren die Songs nicht besonders gut oder technisch anspruchsvoll, ich hatte ja noch keine nennenswerten Skills im Gitarrenspiel oder Gesang erlernt. Doch dann passierte etwas: Meine Motivation kam auf! Ich erkannte, wie diese Techniken und Fertigkeiten mir ermöglichten, meine eigenen Gefühle und Gedanken auszudrücken. Es war, als ob ich meine eigenen Produkte erschaffen konnte.

      Ich schrieb immer mehr Songs und erlernte dabei fast unbemerkt wichtige Fähigkeiten auf dem Griffbrett. Es wurde meine ganz persönliche Mission, alle erforderlichen Fingerübungen stoisch zu meistern, um immer komplexere Strukturen spielen zu können. Gleichzeitig wurde ich Teil von Bands und einer lokalen Musikszene, in der wir uns auf Konzerten gegenseitig inspirierten und immer wieder motivierten, komplexeres und besseres Material zu schreiben. Hier konnten wir auch weitere, meist noch jüngere, Musikfans dafür begeistern, sich an dieser Musik zu versuchen. Diese kamen dazu, hörten mit und dachten sich: “Das will ich auch können!”. So begannen sie selbst, eigene Songs zu schreiben, eigene Techniken zu erlernen und Teil einer kreativen Kulturszene zu werden.

      Skills allein sind nicht alles

      Man fragt sich nun sicherlich, was dieser kleine Exkurs mit Datenkultur zu tun hat. Das oben genannte Thema hat sich auch in meiner Arbeit mit Datenkultur widergespiegelt. In unserer AI Academy geht es vor allem um Themen der Data Literacy und um verwandte Skills. Ich habe anfangs genau denselben Denkfehler erneut begangen, der mich auch beim Lernen meines Instrumentes hinderte: Die Skills sind alles – oder mit den Skills wird der Rest schon irgendwie kommen.

      Ich ging davon aus, dass die vermittelten Skills so wichtig, so relevant, so produktiv und vor allem so attraktiv für Lernende sind, dass sich nach Erlernen dieser Skills alles weitere automatisch ergibt.

      Dem ist aber nicht so. Im Laufe der Zeit haben wir durch unsere Trainings einen immer größeren Personenkreis erreicht, darunter auch solche mit verschiedenen Kernkompetenzen. Dabei handelt es sich um Menschen, die nicht in ihrer Haupttätigkeit Evangelisten oder Enthusiasten für Matrixalgebra sein können oder wollen.

      Hierbei stehen immer wieder die folgenden Fragen im Vordergrund:

      „Was hat das mit mir zu tun?“
      „Was hat das mit meiner Arbeit zu tun?“
      „Wie könnte das für mich wertvoll sein?”

      Und genauso wie in meiner Geschichte über das Songschreiben, dem Spielen auf Konzerten oder den Austausch innerhalb einer Musikszene, ging es mir auch bei dem Thema Daten und Upskilling.

      Einige unserer erfolgreichsten Trainingsformate, der AI Basics Workshop und Data Literacy Workshop, ermöglichen die grundsätzlich wichtigsten Themen und Learnings rund um Daten und KI für das eigene Unternehmen nutzbar zu machen – mit der Möglichkeit, gemeinsam mit erfahrenen KI-Expert:innen eigene Ideen für die Nutzung dieser Technologien zu generieren. Es handelt sich hierbei nicht ausschließlich um das Erlernen der Funktionsweise von KI, sondern um eine interaktive und geführte Exploration:

      „Was hat das mit mir zu tun?“
      „Wie kann ich damit Wert für meine Umgebung erzeugen?“
      „Welche Probleme muss KI für mich lösen können?“

      Motivierende Ideen

      Zunächst merkten wir, wie Trainingsteilnehmende enthusiastischer mit den Inhalten interagierten und sich die Stimmung in unseren Kursen viel stärker in Richtung eines Growth Mindsets bewegt hat:

      Nicht darauf fokussiert zu sein, was ich bereits kann, sondern vielmehr zu fragen, was ich noch erreichen und was ich erreichen möchte.

      Unsere Kurse gewannen auf der anderen Seite schnell an Beliebtheit bei den Mitarbeiter:innen unserer Kunden. Wir freuten uns natürlich über die Mundpropaganda, die zur Anerkennung der hohen Kursqualität und der spannenden Themen beitrug. Allerdings haben wir nicht vorhergesehen, dass die im Kurs generierten Ideen eine eigene Dynamik entwickeln und in vielen Fällen eine noch größere Strahlkraft im Unternehmen erzeugen als der Kurs selbst.

      Ähnlich wie bei Konzerten in der Death-Metal-Szene konnten auch hier neue Enthusiast:innen gewonnen werden. Diese haben erkannt, dass die Person, die einen Use Case erfolgreich vorantreibt, vor relativ kurzer Zeit ebenfalls noch am Anfang beim Thema Daten und KI stand.

      “Wenn andere das geschafft haben, möchte ich das auch probieren, und zwar im Hinblick auf meine Themen – wie ich die Fingerfertigkeiten dafür lerne, das finde ich schon noch auf dem Weg heraus.”

      Können – Tun – Wollen – ein konstanter Kreislauf in der Organisation

      Und so fügten sich drei wichtige Dimensionen für uns zusammen.

      1. Das Können – Das Beherrschen von Fähigkeiten wie gutem Gitarrenspiel, Projektmanagement im Bereich Daten und KI, Programmierung oder Grundkenntnissen in Datenanalyse.
      2. Das Tun – Regelmäßiges und ritualisiertes Arbeiten mit dem Thema, das Durchführen erster Use-Cases und der Austausch mit anderen, um die Sprache interaktiv zu erlernen.
      3. Das Wollen – Durch erste Erfolgserlebnisse, inspirierenden Austausch und eine klare Vision für die potentielle Wirkung und Wertgenerierung im Unternehmen eine nachhaltige Motivation zum Erreichen von Zielen schaffen.

      Die drei Dimensionen bilden einen Kreislauf, bei dem jede Dimension von den anderen abhängig ist und positiv auf die anderen Dimensionen zurückwirkt. Wenn ich meine Fähigkeiten im Gitarrespielen verbessere, wird es mir leichter fallen, neue Ideen zu entwickeln und erfolgreich mit anderen zu teilen. Dadurch entsteht eine weitere Motivation, um weitere Fähigkeiten und Herausforderungen anzugehen.

      Das ist der Grund weshalb Datenkultur und Death Metal für mich ziemlich viel miteinander gemeinsam haben.

      Wenn Sie mehr über Datenkultur sowie das Können, Tun und Wollen erfahren möchten, lassen Sie uns gerne in den Austausch treten!

      Mehr über AI Academy

       

      Bildnachweis:

      AdobeStock 480687393 zamuruev David Schlepps

      OpenAI hat diese Woche eine neue Version des Sprachmodells hinter ChatGPT veröffentlicht – GPT-4. Die Neuerungen dieses Modells haben das Potenzial, die bisherigen Grenzen des Sprachverständnisses zu erweitern und die Interaktion zwischen Mensch und Maschine auf ein neues Niveau zu bringen. Wir haben uns sofort mit den wichtigsten Neuerungen von GPT-4 beschäftigt und unsere ersten Eindrücke zusammengetragen.

      Zu Beginn des Jahres erhielt bereits viel Aufmerksamkeit für seine beeindruckenden Leistungen bei Aufgaben, die die Verarbeitung natürlicher Sprache benötigen. So ist das leistungsstarke Textgenerierungsmodell von OpenAI in der Lage, menschenähnliche Texte zu erzeugen, Code zu vervollständigen oder kurze Gedichte oder Geschichten zu erstellen, auch wenn es noch lange nicht perfekt ist.

      Nach eigenen Angaben ist das Modell GPT-4 nun noch kreativer, zuverlässiger und kann komplexe Aufgaben mit größerer Genauigkeit als sein Vorgänger lösen. In einer öffentlichen Demo hat das Modell gezeigt, wie es auf Basis einer einfachen Skizze ein voll funktionsfähiges Websitelayout generieren kann – ein Beispiel für die Fähigkeit von GPT-4, nicht nur Text, sondern auch Bilder zu verarbeiten. Wir werfen einen ersten Blick auf die Neuerungen und Erweiterungen des Sprachmodells.

      #1 Neben Text können auch Bilder verarbeitet werden

      Das ist neu

      GPT-4 ist in der Lage, nicht nur Text, sondern auch visuelle Inhalte in Form von Bildern zu erfassen und zu analysieren. Demnach kann das Modell Bilder beschreiben, interpretieren sowie Zusammenhänge zwischen diesen aufzeigen. Im Rahmen von Vorführungen hat sich gezeigt, dass GPT-4 in der Lage ist, schrittweise Erklärungen von Memes zu liefern oder komplexe Infografiken zusammenzufassen.

      Unsere Einschätzung

      Die Funktion von GPT-4, Bilder zu verarbeiten, ist momentan lediglich ausgewählten Partnern von OpenAI vorbehalten. Nichtsdestotrotz existieren bereits seit einiger Zeit weitere KI-Systeme, welche die Verknüpfung von Sprache und Bildern ermöglichen. Gerade im Bereich der automatisierten Informationsextraktion aus Dokumenten ist die Erweiterung des Modelinputs auf die visuelle Domäne von Vorteil. So können mit GPT4 auch Informationen berücksichtigt werden, die sich in Abbildungen und Graphen des Dokuments wiederfinden.

      #2 Die Performance bei komplexen Aufgaben ist signifikant besser

      Das ist neu

      GPT-4 hat in zahlreichen Benchmark-Tests im Vergleich zu seinem Vorgänger signifikante Leistungsverbesserungen gezeigt. Insbesondere bei Prüfungen, die in der Regel von Jura- oder naturwissenschaftlichen Studierenden absolviert werden, erzielt das Modell überdurchschnittlich hohe Punktzahlen.

      Unsere Einschätzung

      Auf den ersten Blick ist das Abschneiden von GPT-4 zweifellos beeindruckend und zeigt, wie gut die KI in der Lage ist, Wissen in Textform wiederzugeben. Man sollte jedoch nicht vergessen, dass die verwendeten Tests konzipiert wurden, um Menschen anhand ihrer Fähigkeiten in einem bestimmten Bereich untereinander zu vergleichen. Anforderungen an eine spezialisierte KI, die für einen bestimmten Teilbereich optimiert wurde, können daher von Leistungsanforderungen an Menschen abweichen.

      #3 Der Antwortstil des Models kann je nach Nutzungszweck angepasst werden

      Das ist neu

      Durch Verwendung einer System Message steht sowohl Entwickler:innen als auch später Nutzer:innen von ChatGPT eine Option zur Verfügung, um den Antwortstil des Sprachmodells anzupassen.

      Unsere Einschätzung dazu

      Die Möglichkeit das Antwortverhalten von GPT-4 anzupassen, erlaubt Nutzer:innen die Technologie besser auf ihren Anwendungsbereich zuzuschneiden und beispielsweise Serviceerfahrungen zu verbessern. Der Vorteil des gewählten Ansatzes – das Sprachmodell kann einfach für Downstream-Aufgaben optimiert werden, ohne das große Datenmengen oder weitere Trainingsressourcen benötigt werden.

      #4 Die verarbeitbare Textmenge verachtfacht sich

      Das ist neu

      Die Länge des Kontexts, die während des Prozesses der Textgenerierung von GPT-4 genutzt werden kann, steigt in den verschiedenen Versionen auf bis zu 32.000 Wörter oder etwa 50 Seiten an. Somit ist GPT-4 nun in der Lage, Texte mit höherer Kohärenz und einem stärkeren Fokus auf das ursprüngliche Thema zu generieren.

      Unsere Einschätzung dazu

      Die Fähigkeit, größere Mengen an Texten zu verarbeiten, hat für praktische Anwendungen interessante Auswirkungen. Obwohl ChatGPT bereits über eine sehr gute Zusammenfassungsfähigkeit für kurze Texte verfügt, besteht nun die Möglichkeit, diese Fähigkeit auch auf vollständige Dokumente auszudehnen.

      #5 Logische Fehler und Falschaussagen treten weniger häufig auf

      Das ist neu

      Im direkten Vergleich mit seinem Vorgänger weist der Output von GPT-4 weniger Falschaussagen und Widersprüche auf. Außerdem wurde der Umgang mit Anfragen, die gegen Richtlinien verstoßen, verbessert.

      Unsere Einschätzung dazu

      Obwohl GPT-4 einige Verbesserungen aufweist, bleibt die Verlässlichkeit des Modeloutputs ein erhebliches Problem, das die Nutzung des Modells einschränkt. Die generierten Texte können nach wie vor von Vorurteilen geprägt sein und Desinformationen enthalten, die sorgfältig geprüft werden sollten.

      Ausblick

      In der Welt der künstlichen Intelligenz hat OpenAI mit der Veröffentlichung von GPT-4 zweifellos ein spannendes Upgrade seines GPT-3-Modells vorgenommen. Die neuen Funktionen von GPT-4 sind interessant, da sie die Leistung und die Fähigkeiten von KI in vielen Bereichen verbessern können.

      Dennoch gibt es einige Einschränkungen und Bedenken, die mit GPT-4 verbunden sind. Im Gegensatz zu früheren Veröffentlichungen ist OpenAI leider deutlich weniger transparent in Bezug auf Modelldetails. So stehen der Öffentlichkeit nur stark begrenzte Informationen über die Modelarchitektur, den Trainingsansatz oder die Datengrundlage des Modells zur Verfügung. Dies macht es beispielsweise schwierig einzuschätzen, inwieweit das Modell Vorurteile übernommen haben könnte, die eine Nutzung beeinflussen.

      GPT-4 stellt im Vergleich zu seinem Vorgänger eine Verbesserung dar, aber nicht unbedingt einen großen Schritt nach vorne. Obwohl es einige neue Funktionen gibt, sind diese nicht so revolutionär wie einige erhofft hatten. Es ist daher sehr wichtig, dass wir realistische Erwartungen an die Fähigkeiten von GPT-4 haben und Leistungen und Grenzen des Modells sollten sorgfältig prüfen, bevor wir es in verschiedenen Anwendungen einsetzen. So kann sichergestellt werden, dass die Technologie im Rahmen ihrer derzeitigen Möglichkeiten gewinnbringend eingesetzt wird. Mareike Flögel

      Eine Datenkultur ist ein Schlüsselfaktor für die effektive Datennutzung

      Mit der zunehmenden Digitalisierung ist die Fähigkeit, Daten effektiv zu nutzen, zu einem entscheidenden Erfolgsfaktor für Unternehmen geworden. Diese Denk- und Handlungsweise wird oft als Datenkultur bezeichnet und spielt eine entscheidende Rolle bei der Umwandlung eines Unternehmens in eine datengesteuerte Organisation. Durch die Förderung einer Datenkultur können Unternehmen von der Flexibilität einer faktenbasierten Entscheidungsfindung profitieren und das Potenzial ihrer Daten voll ausschöpfen. Eine solche Kultur ermöglicht schnellere und nachweislich bessere Entscheidungen und verankert datengetriebene Innovation im Unternehmen.

      Obwohl Notwendigkeit und Nutzen einer Datenkultur offensichtlich erscheinen, scheitern dennoch viele Unternehmen an der Herausforderung eine solche Kultur zu etablieren. Einer Studie von New Vantage Partners zur Folge, konnten bisher nur 20% der Unternehmen erfolgreich eine Datenkultur entwickeln. Weiter bezeichnen über 90% der befragten Unternehmen die Veränderung der Kultur als größte Hürde bei der Transformation zum datengetriebenen Unternehmen.

      Eine Datenkultur verändert die Arbeitsweise fundamental

      Die Ursachen für diese Herausforderung sind vielfältig und die erforderlichen Veränderungen durchdringen nahezu alle Aspekte des Arbeitsalltages. In einer effektiven Datenkultur nutzt jede:r Mitarbeiter:in bevorzugt Daten und Datenanalysen zur Entscheidungsfindung und räumt Daten und Fakten Priorität gegenüber dem individuellen „Bauchgefühl“ ein. Diese Denkweise fördert die stetige Suche nach Möglichkeiten der Datennutzung, um so Wettbewerbsvorteile zu identifizieren, neue Einnahmequellen zu erschließen, Prozesse zu optimieren und bessere Vorhersagen zu treffen. Indem sie sich eine Datenkultur zu eigen machen, können Unternehmen das volle Potenzial ihrer Daten ausschöpfen und Innovationen im gesamten Unternehmen vorantreiben. Das bedingt, dass Daten als wichtige Triebkraft für Entscheidungsfindung und Innovation erkannt werden. Dieses Idealbild stellt neue Anforderungen an das individuelle Verhalten der Mitarbeitenden. Darüber hinaus erfordert dies auch eine gezielte Unterstützung dieses Verhaltens durch geeignete Rahmenbedingungen wie eine technische Infrastruktur und organisatorische Abläufe.

      Drei Faktoren prägen die Datenkultur maßgeblich

      Um eine Datenkultur nachhaltig im Unternehmen zu verankern, sind vor allem drei Faktoren entscheidend:

      1. Können | Fähigkeiten
      2. Wollen | Einstellung
      3. Machen | Verhalten

      statworx nutzt diese drei Faktoren, um einerseits das abstrakte Konzept der Datenkultur greifbar zu machen und andererseits, um gezielt notwendige Veränderungen anzustoßen.

      Dabei ist es entscheidend, allen Faktoren gleichermaßen Aufmerksamkeit zu schenken und sie möglichst ganzheitlich zu beachten. Häufig beschränken sich Initiativen zur Kulturentwicklung auf den Aspekt der Einstellung und versuchen bestimmte Werte losgelöst von anderen Einflussfaktoren zu verankern. Diese Initiativen scheitern dann meist an der Realität der Unternehmen, die mit ihren Prozessen, gelebten Ritualen, Praktiken und Werten entgegenstehen und somit die Etablierung der Kultur (aktiv) verhindern.

      Zur Übersicht haben wir drei Faktoren der Datenkultur in einem Framework festgehalten.

      1. Können: Fähigkeiten bilden die Basis für effektive Datennutzung

      Fähigkeiten und Fertigkeiten bilden die Grundlage für den effektiven Umgang mit Daten. Diese umfassen zum einen die methodischen und fachlichen Fähigkeiten der Mitarbeitenden und zum anderen die Fähigkeit der Organisation, Daten nutzbar zu machen.

      Für die Nutzbarkeit der Daten ist dabei die Sicherstellung der Datenverfügbarkeit von besonderer Bedeutung. Der „FAIR“-Standard – Findable, Accessible, Interoperable, Reusable – gibt eine Richtung vor, welche Eigenschaften dabei wesentlich sind. Diese können zum Beispiel durch Technologien, Wissensmanagement und eine geeignete Governance unterstützt werden.

      Auf Ebene der Fähigkeiten der Mitarbeitenden liegt der Schwerpunkt auf Data Literacy (=Datenkompetenz) – der Fähigkeit, Daten zu verstehen und effektiv zu nutzen, um fundierte Entscheidungen zu treffen. Dazu gehört ein grundlegendes Verständnis von Datentypen und Strukturen, wie auch Erhebungs- und Analysemethoden. Data Literacy beinhaltet auch die Fähigkeit, die richtigen Fragen zu stellen, Daten richtig zu interpretieren und Muster und Trends zu erkennen. Bauen Sie relevante Kompetenzen, zum Beispiel durch Upskilling, gezielte Personalplanung und Einstellung von Datenexperten auf.

      2. Wollen: Eine Datenkultur kann nur in passendem Wertekontext gedeihen

      Der zweite Faktor – Wollen – befasst sich mit den Einstellungen und Absichten der Mitarbeitenden und der Organisation als Ganzes gegenüber der Nutzung von Daten. Dafür müssen sowohl die Überzeugungen und Werte von Individuen als auch der Gemeinschaft im Unternehmen adressiert werden. Für die Datenkultur sind dabei vier Aspekte von zentraler Bedeutung:

      • Zusammenarbeit & Gemeinschaft statt Konkurrenz
      • Transparenz & Teilen statt Informationsverschleierung & Datenhortung
      • Pilotprojekte & Experimente statt theoretischer Einschätzung
      • Offenheit & Lernbereitschaft statt Kleinlichkeit & starrer Denkweise
      • Daten als zentrale Entscheidungsgrundlage statt individueller Meinung & Bauchgefühl

      Fallbeispiel: Unternehmen ohne Datenkultur

      Auf individueller Ebene ist ein:e Mitarbeiter:in davon überzeugt, dass man sich mit exklusivem Wissen und Daten einen Vorteil verschaffen kann. Die Person hat innerhalb der Organisation außerdem gelernt, dass sich so strategische Vorteile oder Möglichkeiten zur eigenen Positionierung ergeben, und wurde in der Vergangenheit von Vorgesetzten für solches Verhalten belohnt. Die Person ist also davon überzeugt, dass es absolut sinnvoll und vorteilhaft ist, Daten für sich oder innerhalb des eigenen Teams zu behalten und nicht mit anderen Abteilungen zu teilen. Das Konkurrenzdenken und die Tendenz zur Geheimhaltung sind als Wert fest verankert.

      Generell schränkt ein Verhalten wie im Fallbeispiel beschrieben, die Transparenz im gesamten Unternehmen ein und bremst dadurch die Organisation aus. Wenn nicht alle dieselben Informationen haben, ist es schwierig, die bestmögliche Entscheidung für das gesamte Unternehmen zu treffen. Nur durch Offenheit und Kollaboration kann der wahre Wert der Daten im Unternehmen genutzt werden.  Ein datengetriebenes Unternehmen basiert auf einer Kultur der Zusammenarbeit, des Teilens und des Lernens. Wenn Menschen dazu ermutigt werden, ihre Ideen und Erkenntnisse auszutauschen, können bessere Entscheidungen getroffen werden.

      Auch mögliche Absichtserklärungen, wie Leitbilder und Manifeste ohne greifbare Maßnahmen, werden an der Einstellung der Mitarbeitenden nur wenig ändern. Die große Herausforderung besteht darin, die Werte nachhaltig zu verankern und für alle Mitarbeitenden zur leitenden Handlungsprämisse zu machen, die im Unternehmensalltag aktiv gelebt wird. Gelingt dies, ist die Organisation auf dem besten Weg das erforderliche Data Mindset zu schaffen, um eine effektive und erfolgreiche Datenkultur zum Leben zu erwecken. Bei der Etablierung und Sichtbarmachung dieser Werte kann zum Beispiel unser Transformations-Framework helfen.

      Wir empfehlen den Aufbau einer Datenkultur Schritt für Schritt zu beginnen, denn bereits kleine experimentelle Projekte schaffen Mehrwert, dienen als Positivbeispiel und schaffen Vertrauen. Die praktische Erprobung einer neuen Innovation, selbst nur in einem begrenzten Rahmen, bringt erfahrungsgemäß schneller und bessere Resultate als eine theoretische Einschätzung. Letztlich geht es darum, den Wert von Daten in den Vordergrund zu stellen.

      3. Machen: Verhalten schafft den Rahmen und ist gleichzeitig sichtbares Resultat der Datenkultur

      Die beiden zuvor genannten Faktoren zielen letztendlich darauf ab, dass Mitarbeitende und die Organisation als Gesamtkonstrukt ihr Verhalten anpassen. Nur aktiv gelebte Datenkultur kann erfolgreich sein. Das alltägliche Verhalten – das Machen – spielt demnach eine zentrale Rolle bei der Etablierung einer Datenkultur.

      Das Verhalten der Organisation lässt sich vor allem in zwei Dimensionen betrachten und gleichzeitig durch Veränderungen prägen.

      1. Aktivitäten und Rituale
      2. Strukturelemente der Organisation

      Aktivitäten und Rituale:

      Aktivitäten und Rituale beziehen sich auf die alltägliche Zusammenarbeit zwischen den Mitarbeitenden einer Organisation. Sie äußern sich in allen Formen der Zusammenarbeit, von den Abläufen in Meetings, über den Umgang mit Feedback und Risiken bis hin zur jährlichen Weihnachtsfeier. Dabei ist entscheidend, welchen Mustern das Miteinander folgt und welches Verhalten belohnt bzw. bestraft wird.

      Erfahrungsgemäß fällt die Transformation zu datengetriebenen Entscheidungen den Teams leichter, welche bereits mit agilen Methoden wie Scrum vertraut sind. Teams, welche wiederrum starken Hierarchien folgen und risikoavers agieren, bewältigen diese Herausforderung weniger leicht. Ein Grund dafür ist, dass agile Arbeitsweisen Zusammenarbeit verschiedener Rollen bekräftigen, und so das Fundament für ein produktives Arbeitsumfeld schaffen. In diesem Kontext ist die Rolle der Führung, insbesondere des Senior Leaderships, von entscheidender Bedeutung. Die Personen auf C-Level müssen zwingend von Beginn an das erwünschte Verhalten vorleben, Rituale und Aktivitäten einführen und gemeinsam als zentraler Treiber der Transformation agieren.

      Strukturelemente der Organisation:

      Während Aktivitäten und Rituale aus den Teams heraus entstehen und nicht immer vorgegeben werden, bildet die zweite Dimension eine stärkere Formalisierung ab. Sie bezieht sich auf die Strukturelemente einer Organisation. Diese bilden den formalen Rahmen für Entscheidungen und prägen dadurch auch das Verhalten, sowie die Entstehung und Verankerung von Werten und Einstellungen.

      Dabei wird zwischen internen und externen Strukturelementen unterschieden. Interne Strukturelemente sind vor allem innerhalb der Organisation sichtbar – zum Beispiel Rollen, Prozesse, Hierarchieebenen, oder Gremien. Durch die Anpassungen und Umstrukturierung von Rollen können erforderliche Skills im Unternehmen abgebildet werden. Weiter können Belohnungen und Beförderungen für Mitarbeitende einen Anreiz schaffen das Verhalten selbst anzunehmen und an Kolleg:innen weiterzugeben. Auch die Aufteilung der Arbeitsumgebung ist ein Teil der internen Struktur. Da die Arbeitsweise in datengetriebenen Unternehmen auf enger Zusammenarbeit beruht und Personen mit verschieden Fähigkeiten braucht. Daher bietet es sich an einen Raum für offenen Austausch zu schaffen, der Kommunikation und Kollaboration zulässt.

      Externe Strukturelemente spiegeln internes Verhalten nach außen. Demnach beeinflussen die internen Strukturelemente, die Wahrnehmung des Unternehmens von außen. Dies zeigt sich beispielsweise durch eine klare Kommunikation, den Aufbau der Webseite sowie durch Stellenausschreibungen und Marketingbotschaften.

      Unternehmen sollten ihr äußeres Verhalten so gestalten, dass es mit den Werten der Organisation übereinstimmt und somit eigene Strukturen unterstützt. Auf diese Weise kann eine harmonische Abstimmung zwischen der internen und der externen Positionierung der Firma erreicht werden.

      Erste, kleine Schritte können bereits große Veränderungen schaffen

      Unsere Erfahrung hat gezeigt, dass die aufeinander abgestimmte Gestaltung von Können, Wollen und Machen in eine nachhaltige Datenkultur resultiert. Nun ist klar, dass eine Datenkultur nicht von heute auf morgen geschaffen werden kann, aber es auch nicht mehr ohne geht. Es hat sich bewährt diese Herausforderung in kleine Schritte zu unterteilen. Mit ersten Pilotprojekten, wie beispielsweise der Etablierung der Datenkultur in nur einem Team und Initiativen für besonders engagierte Mitarbeitende, die den Wandel vorantreiben wollen, wird Vertrauen in den Kulturwandel geschaffen. Positive Einzelerlebnisse dienen als hilfreicher Katalysator für den Wandel der gesamten Organisation.

      Der Philosoph und Visionär R. Buckminster Fuller hat dazu gesagt „Man bewirkt niemals eine Veränderung, indem man das Bestehende bekämpft. Um etwas zu verändern, schafft man neue Dinge oder geht andere Wege, die das Alte überflüssig machen.“ Denn mit der Weiterentwicklung der Technologie müssen Unternehmen in der Lage sein, sich anzupassen, um das gesamte Potential auszuschöpfen. So können Entscheidungen schneller und genauer als je zuvor getroffen, Innovation vorangetrieben und Prozesse zunehmend optimiert werden. Die nachhaltige Etablierung einer Datenkultur wird Unternehmen einen Wettbewerbsvorteil auf dem Markt verschaffen. In der Zukunft wird die Datenkultur ein wesentlicher Bestandteil jeder erfolgreichen Geschäftsstrategie sein. Unternehmen, die dies nicht annehmen, bleiben zurück.

      Jedoch ist die Nutzung von Daten für viele Unternehmen ein großes Problem. Oft stehen die Datenqualität und die Zusammenstellung der Daten im Weg. Auch wenn in vielen Unternehmen bereits Datenlösungen vorhanden sind, werden sie nicht optimal genutzt. So bleiben viele Informationen ungenutzt und können nicht in die Entscheidungsfindung einfließen.

      Quellen:

      [1] https://hbr.org/2020/03/how-ceos-can-lead-a-data-driven-culture

      Bild: AdobeStock 569760113 Annsophie Huber

      Eine Datenkultur ist ein Schlüsselfaktor für die effektive Datennutzung

      Mit der zunehmenden Digitalisierung ist die Fähigkeit, Daten effektiv zu nutzen, zu einem entscheidenden Erfolgsfaktor für Unternehmen geworden. Diese Denk- und Handlungsweise wird oft als Datenkultur bezeichnet und spielt eine entscheidende Rolle bei der Umwandlung eines Unternehmens in eine datengesteuerte Organisation. Durch die Förderung einer Datenkultur können Unternehmen von der Flexibilität einer faktenbasierten Entscheidungsfindung profitieren und das Potenzial ihrer Daten voll ausschöpfen. Eine solche Kultur ermöglicht schnellere und nachweislich bessere Entscheidungen und verankert datengetriebene Innovation im Unternehmen.

      Obwohl Notwendigkeit und Nutzen einer Datenkultur offensichtlich erscheinen, scheitern dennoch viele Unternehmen an der Herausforderung eine solche Kultur zu etablieren. Einer Studie von New Vantage Partners zur Folge, konnten bisher nur 20% der Unternehmen erfolgreich eine Datenkultur entwickeln. Weiter bezeichnen über 90% der befragten Unternehmen die Veränderung der Kultur als größte Hürde bei der Transformation zum datengetriebenen Unternehmen.

      Eine Datenkultur verändert die Arbeitsweise fundamental

      Die Ursachen für diese Herausforderung sind vielfältig und die erforderlichen Veränderungen durchdringen nahezu alle Aspekte des Arbeitsalltages. In einer effektiven Datenkultur nutzt jede:r Mitarbeiter:in bevorzugt Daten und Datenanalysen zur Entscheidungsfindung und räumt Daten und Fakten Priorität gegenüber dem individuellen „Bauchgefühl“ ein. Diese Denkweise fördert die stetige Suche nach Möglichkeiten der Datennutzung, um so Wettbewerbsvorteile zu identifizieren, neue Einnahmequellen zu erschließen, Prozesse zu optimieren und bessere Vorhersagen zu treffen. Indem sie sich eine Datenkultur zu eigen machen, können Unternehmen das volle Potenzial ihrer Daten ausschöpfen und Innovationen im gesamten Unternehmen vorantreiben. Das bedingt, dass Daten als wichtige Triebkraft für Entscheidungsfindung und Innovation erkannt werden. Dieses Idealbild stellt neue Anforderungen an das individuelle Verhalten der Mitarbeitenden. Darüber hinaus erfordert dies auch eine gezielte Unterstützung dieses Verhaltens durch geeignete Rahmenbedingungen wie eine technische Infrastruktur und organisatorische Abläufe.

      Drei Faktoren prägen die Datenkultur maßgeblich

      Um eine Datenkultur nachhaltig im Unternehmen zu verankern, sind vor allem drei Faktoren entscheidend:

      1. Können | Fähigkeiten
      2. Wollen | Einstellung
      3. Machen | Verhalten

      statworx nutzt diese drei Faktoren, um einerseits das abstrakte Konzept der Datenkultur greifbar zu machen und andererseits, um gezielt notwendige Veränderungen anzustoßen.

      Dabei ist es entscheidend, allen Faktoren gleichermaßen Aufmerksamkeit zu schenken und sie möglichst ganzheitlich zu beachten. Häufig beschränken sich Initiativen zur Kulturentwicklung auf den Aspekt der Einstellung und versuchen bestimmte Werte losgelöst von anderen Einflussfaktoren zu verankern. Diese Initiativen scheitern dann meist an der Realität der Unternehmen, die mit ihren Prozessen, gelebten Ritualen, Praktiken und Werten entgegenstehen und somit die Etablierung der Kultur (aktiv) verhindern.

      Zur Übersicht haben wir drei Faktoren der Datenkultur in einem Framework festgehalten.

      1. Können: Fähigkeiten bilden die Basis für effektive Datennutzung

      Fähigkeiten und Fertigkeiten bilden die Grundlage für den effektiven Umgang mit Daten. Diese umfassen zum einen die methodischen und fachlichen Fähigkeiten der Mitarbeitenden und zum anderen die Fähigkeit der Organisation, Daten nutzbar zu machen.

      Für die Nutzbarkeit der Daten ist dabei die Sicherstellung der Datenverfügbarkeit von besonderer Bedeutung. Der „FAIR“-Standard – Findable, Accessible, Interoperable, Reusable – gibt eine Richtung vor, welche Eigenschaften dabei wesentlich sind. Diese können zum Beispiel durch Technologien, Wissensmanagement und eine geeignete Governance unterstützt werden.

      Auf Ebene der Fähigkeiten der Mitarbeitenden liegt der Schwerpunkt auf Data Literacy (=Datenkompetenz) – der Fähigkeit, Daten zu verstehen und effektiv zu nutzen, um fundierte Entscheidungen zu treffen. Dazu gehört ein grundlegendes Verständnis von Datentypen und Strukturen, wie auch Erhebungs- und Analysemethoden. Data Literacy beinhaltet auch die Fähigkeit, die richtigen Fragen zu stellen, Daten richtig zu interpretieren und Muster und Trends zu erkennen. Bauen Sie relevante Kompetenzen, zum Beispiel durch Upskilling, gezielte Personalplanung und Einstellung von Datenexperten auf.

      2. Wollen: Eine Datenkultur kann nur in passendem Wertekontext gedeihen

      Der zweite Faktor – Wollen – befasst sich mit den Einstellungen und Absichten der Mitarbeitenden und der Organisation als Ganzes gegenüber der Nutzung von Daten. Dafür müssen sowohl die Überzeugungen und Werte von Individuen als auch der Gemeinschaft im Unternehmen adressiert werden. Für die Datenkultur sind dabei vier Aspekte von zentraler Bedeutung:

      Fallbeispiel: Unternehmen ohne Datenkultur

      Auf individueller Ebene ist ein:e Mitarbeiter:in davon überzeugt, dass man sich mit exklusivem Wissen und Daten einen Vorteil verschaffen kann. Die Person hat innerhalb der Organisation außerdem gelernt, dass sich so strategische Vorteile oder Möglichkeiten zur eigenen Positionierung ergeben, und wurde in der Vergangenheit von Vorgesetzten für solches Verhalten belohnt. Die Person ist also davon überzeugt, dass es absolut sinnvoll und vorteilhaft ist, Daten für sich oder innerhalb des eigenen Teams zu behalten und nicht mit anderen Abteilungen zu teilen. Das Konkurrenzdenken und die Tendenz zur Geheimhaltung sind als Wert fest verankert.

      Generell schränkt ein Verhalten wie im Fallbeispiel beschrieben, die Transparenz im gesamten Unternehmen ein und bremst dadurch die Organisation aus. Wenn nicht alle dieselben Informationen haben, ist es schwierig, die bestmögliche Entscheidung für das gesamte Unternehmen zu treffen. Nur durch Offenheit und Kollaboration kann der wahre Wert der Daten im Unternehmen genutzt werden.  Ein datengetriebenes Unternehmen basiert auf einer Kultur der Zusammenarbeit, des Teilens und des Lernens. Wenn Menschen dazu ermutigt werden, ihre Ideen und Erkenntnisse auszutauschen, können bessere Entscheidungen getroffen werden.

      Auch mögliche Absichtserklärungen, wie Leitbilder und Manifeste ohne greifbare Maßnahmen, werden an der Einstellung der Mitarbeitenden nur wenig ändern. Die große Herausforderung besteht darin, die Werte nachhaltig zu verankern und für alle Mitarbeitenden zur leitenden Handlungsprämisse zu machen, die im Unternehmensalltag aktiv gelebt wird. Gelingt dies, ist die Organisation auf dem besten Weg das erforderliche Data Mindset zu schaffen, um eine effektive und erfolgreiche Datenkultur zum Leben zu erwecken. Bei der Etablierung und Sichtbarmachung dieser Werte kann zum Beispiel unser Transformations-Framework helfen.

      Wir empfehlen den Aufbau einer Datenkultur Schritt für Schritt zu beginnen, denn bereits kleine experimentelle Projekte schaffen Mehrwert, dienen als Positivbeispiel und schaffen Vertrauen. Die praktische Erprobung einer neuen Innovation, selbst nur in einem begrenzten Rahmen, bringt erfahrungsgemäß schneller und bessere Resultate als eine theoretische Einschätzung. Letztlich geht es darum, den Wert von Daten in den Vordergrund zu stellen.

      3. Machen: Verhalten schafft den Rahmen und ist gleichzeitig sichtbares Resultat der Datenkultur

      Die beiden zuvor genannten Faktoren zielen letztendlich darauf ab, dass Mitarbeitende und die Organisation als Gesamtkonstrukt ihr Verhalten anpassen. Nur aktiv gelebte Datenkultur kann erfolgreich sein. Das alltägliche Verhalten – das Machen – spielt demnach eine zentrale Rolle bei der Etablierung einer Datenkultur.

      Das Verhalten der Organisation lässt sich vor allem in zwei Dimensionen betrachten und gleichzeitig durch Veränderungen prägen.

      1. Aktivitäten und Rituale
      2. Strukturelemente der Organisation

      Aktivitäten und Rituale:

      Aktivitäten und Rituale beziehen sich auf die alltägliche Zusammenarbeit zwischen den Mitarbeitenden einer Organisation. Sie äußern sich in allen Formen der Zusammenarbeit, von den Abläufen in Meetings, über den Umgang mit Feedback und Risiken bis hin zur jährlichen Weihnachtsfeier. Dabei ist entscheidend, welchen Mustern das Miteinander folgt und welches Verhalten belohnt bzw. bestraft wird.

      Erfahrungsgemäß fällt die Transformation zu datengetriebenen Entscheidungen den Teams leichter, welche bereits mit agilen Methoden wie Scrum vertraut sind. Teams, welche wiederrum starken Hierarchien folgen und risikoavers agieren, bewältigen diese Herausforderung weniger leicht. Ein Grund dafür ist, dass agile Arbeitsweisen Zusammenarbeit verschiedener Rollen bekräftigen, und so das Fundament für ein produktives Arbeitsumfeld schaffen. In diesem Kontext ist die Rolle der Führung, insbesondere des Senior Leaderships, von entscheidender Bedeutung. Die Personen auf C-Level müssen zwingend von Beginn an das erwünschte Verhalten vorleben, Rituale und Aktivitäten einführen und gemeinsam als zentraler Treiber der Transformation agieren.

      Strukturelemente der Organisation:

      Während Aktivitäten und Rituale aus den Teams heraus entstehen und nicht immer vorgegeben werden, bildet die zweite Dimension eine stärkere Formalisierung ab. Sie bezieht sich auf die Strukturelemente einer Organisation. Diese bilden den formalen Rahmen für Entscheidungen und prägen dadurch auch das Verhalten, sowie die Entstehung und Verankerung von Werten und Einstellungen.

      Dabei wird zwischen internen und externen Strukturelementen unterschieden. Interne Strukturelemente sind vor allem innerhalb der Organisation sichtbar – zum Beispiel Rollen, Prozesse, Hierarchieebenen, oder Gremien. Durch die Anpassungen und Umstrukturierung von Rollen können erforderliche Skills im Unternehmen abgebildet werden. Weiter können Belohnungen und Beförderungen für Mitarbeitende einen Anreiz schaffen das Verhalten selbst anzunehmen und an Kolleg:innen weiterzugeben. Auch die Aufteilung der Arbeitsumgebung ist ein Teil der internen Struktur. Da die Arbeitsweise in datengetriebenen Unternehmen auf enger Zusammenarbeit beruht und Personen mit verschieden Fähigkeiten braucht. Daher bietet es sich an einen Raum für offenen Austausch zu schaffen, der Kommunikation und Kollaboration zulässt.

      Externe Strukturelemente spiegeln internes Verhalten nach außen. Demnach beeinflussen die internen Strukturelemente, die Wahrnehmung des Unternehmens von außen. Dies zeigt sich beispielsweise durch eine klare Kommunikation, den Aufbau der Webseite sowie durch Stellenausschreibungen und Marketingbotschaften.

      Unternehmen sollten ihr äußeres Verhalten so gestalten, dass es mit den Werten der Organisation übereinstimmt und somit eigene Strukturen unterstützt. Auf diese Weise kann eine harmonische Abstimmung zwischen der internen und der externen Positionierung der Firma erreicht werden.

      Erste, kleine Schritte können bereits große Veränderungen schaffen

      Unsere Erfahrung hat gezeigt, dass die aufeinander abgestimmte Gestaltung von Können, Wollen und Machen in eine nachhaltige Datenkultur resultiert. Nun ist klar, dass eine Datenkultur nicht von heute auf morgen geschaffen werden kann, aber es auch nicht mehr ohne geht. Es hat sich bewährt diese Herausforderung in kleine Schritte zu unterteilen. Mit ersten Pilotprojekten, wie beispielsweise der Etablierung der Datenkultur in nur einem Team und Initiativen für besonders engagierte Mitarbeitende, die den Wandel vorantreiben wollen, wird Vertrauen in den Kulturwandel geschaffen. Positive Einzelerlebnisse dienen als hilfreicher Katalysator für den Wandel der gesamten Organisation.

      Der Philosoph und Visionär R. Buckminster Fuller hat dazu gesagt „Man bewirkt niemals eine Veränderung, indem man das Bestehende bekämpft. Um etwas zu verändern, schafft man neue Dinge oder geht andere Wege, die das Alte überflüssig machen.“ Denn mit der Weiterentwicklung der Technologie müssen Unternehmen in der Lage sein, sich anzupassen, um das gesamte Potential auszuschöpfen. So können Entscheidungen schneller und genauer als je zuvor getroffen, Innovation vorangetrieben und Prozesse zunehmend optimiert werden. Die nachhaltige Etablierung einer Datenkultur wird Unternehmen einen Wettbewerbsvorteil auf dem Markt verschaffen. In der Zukunft wird die Datenkultur ein wesentlicher Bestandteil jeder erfolgreichen Geschäftsstrategie sein. Unternehmen, die dies nicht annehmen, bleiben zurück.

      Jedoch ist die Nutzung von Daten für viele Unternehmen ein großes Problem. Oft stehen die Datenqualität und die Zusammenstellung der Daten im Weg. Auch wenn in vielen Unternehmen bereits Datenlösungen vorhanden sind, werden sie nicht optimal genutzt. So bleiben viele Informationen ungenutzt und können nicht in die Entscheidungsfindung einfließen.

      Quellen:

      [1] https://hbr.org/2020/03/how-ceos-can-lead-a-data-driven-culture

      Bild: AdobeStock 569760113 Annsophie Huber