Deploy and Scale Machine Learning Models With Kubernetes

Deploy and Scale Machine Learning Models with Kubernetes

Jonas Braun Blog, Data Science

In this article, Jonas Braun reports on the most common way to use Kubernetes: with cloud providers like Google GCP, Amazon AWS or Microsoft Azure. In the article, he looks at how to deploy these containers (i.e. applications or models) reliably and scalably for customers, other applications, internal services or computations with Kubernetes. Finally, the article gives an outlook on tools and further developments.

data engineering

Whitepaper: Machine Learning in the Cloud – Comparing AWS, Azure, and GCP

Alexander Blaufuss Blog, Data Science

In order for companies to continue to be successful in a digital, software and data-driven age, the necessary technical prerequisites must be established. The use of cloud technology is seen as an important element in this process.
In this whitepaper we provide an overview of the range of services offered by the three largest providers for cloud computing, AWS, Azure and GCP.

5 Technologies That Every Data Engineer Should Know

Andre Münch Blog, Data Science

This article presents five technologies that every data engineer should know and master for his daily work. Spark as a data processing tool in the big data environment, Kafka as a streaming platform, Airflow, and serverless architecture for coordination and orchestration are presented. Before that, the importance and role of SQL (Structured Query Language) and relational databases will be discussed.