OpenAI hat diese Woche eine neue Version des Sprachmodells hinter ChatGPT veröffentlicht – GPT-4. Die Neuerungen dieses Modells haben das Potenzial, die bisherigen Grenzen des Sprachverständnisses zu erweitern und die Interaktion zwischen Mensch und Maschine auf ein neues Niveau zu bringen. Wir haben uns sofort mit den wichtigsten Neuerungen von GPT-4 beschäftigt und unsere ersten Eindrücke zusammengetragen.
Zu Beginn des Jahres erhielt bereits viel Aufmerksamkeit für seine beeindruckenden Leistungen bei Aufgaben, die die Verarbeitung natürlicher Sprache benötigen. So ist das leistungsstarke Textgenerierungsmodell von OpenAI in der Lage, menschenähnliche Texte zu erzeugen, Code zu vervollständigen oder kurze Gedichte oder Geschichten zu erstellen, auch wenn es noch lange nicht perfekt ist.
Nach eigenen Angaben ist das Modell GPT-4 nun noch kreativer, zuverlässiger und kann komplexe Aufgaben mit größerer Genauigkeit als sein Vorgänger lösen. In einer öffentlichen Demo hat das Modell gezeigt, wie es auf Basis einer einfachen Skizze ein voll funktionsfähiges Websitelayout generieren kann – ein Beispiel für die Fähigkeit von GPT-4, nicht nur Text, sondern auch Bilder zu verarbeiten. Wir werfen einen ersten Blick auf die Neuerungen und Erweiterungen des Sprachmodells.
#1 Neben Text können auch Bilder verarbeitet werden
Das ist neu
GPT-4 ist in der Lage, nicht nur Text, sondern auch visuelle Inhalte in Form von Bildern zu erfassen und zu analysieren. Demnach kann das Modell Bilder beschreiben, interpretieren sowie Zusammenhänge zwischen diesen aufzeigen. Im Rahmen von Vorführungen hat sich gezeigt, dass GPT-4 in der Lage ist, schrittweise Erklärungen von Memes zu liefern oder komplexe Infografiken zusammenzufassen.
Unsere Einschätzung
Die Funktion von GPT-4, Bilder zu verarbeiten, ist momentan lediglich ausgewählten Partnern von OpenAI vorbehalten. Nichtsdestotrotz existieren bereits seit einiger Zeit weitere KI-Systeme, welche die Verknüpfung von Sprache und Bildern ermöglichen. Gerade im Bereich der automatisierten Informationsextraktion aus Dokumenten ist die Erweiterung des Modelinputs auf die visuelle Domäne von Vorteil. So können mit GPT4 auch Informationen berücksichtigt werden, die sich in Abbildungen und Graphen des Dokuments wiederfinden.
#2 Die Performance bei komplexen Aufgaben ist signifikant besser
Das ist neu
GPT-4 hat in zahlreichen Benchmark-Tests im Vergleich zu seinem Vorgänger signifikante Leistungsverbesserungen gezeigt. Insbesondere bei Prüfungen, die in der Regel von Jura- oder naturwissenschaftlichen Studierenden absolviert werden, erzielt das Modell überdurchschnittlich hohe Punktzahlen.
Unsere Einschätzung
Auf den ersten Blick ist das Abschneiden von GPT-4 zweifellos beeindruckend und zeigt, wie gut die KI in der Lage ist, Wissen in Textform wiederzugeben. Man sollte jedoch nicht vergessen, dass die verwendeten Tests konzipiert wurden, um Menschen anhand ihrer Fähigkeiten in einem bestimmten Bereich untereinander zu vergleichen. Anforderungen an eine spezialisierte KI, die für einen bestimmten Teilbereich optimiert wurde, können daher von Leistungsanforderungen an Menschen abweichen.
#3 Der Antwortstil des Models kann je nach Nutzungszweck angepasst werden
Das ist neu
Durch Verwendung einer System Message steht sowohl Entwickler:innen als auch später Nutzer:innen von ChatGPT eine Option zur Verfügung, um den Antwortstil des Sprachmodells anzupassen.
Unsere Einschätzung dazu
Die Möglichkeit das Antwortverhalten von GPT-4 anzupassen, erlaubt Nutzer:innen die Technologie besser auf ihren Anwendungsbereich zuzuschneiden und beispielsweise Serviceerfahrungen zu verbessern. Der Vorteil des gewählten Ansatzes – das Sprachmodell kann einfach für Downstream-Aufgaben optimiert werden, ohne das große Datenmengen oder weitere Trainingsressourcen benötigt werden.
#4 Die verarbeitbare Textmenge verachtfacht sich
Das ist neu
Die Länge des Kontexts, die während des Prozesses der Textgenerierung von GPT-4 genutzt werden kann, steigt in den verschiedenen Versionen auf bis zu 32.000 Wörter oder etwa 50 Seiten an. Somit ist GPT-4 nun in der Lage, Texte mit höherer Kohärenz und einem stärkeren Fokus auf das ursprüngliche Thema zu generieren.
Unsere Einschätzung dazu
Die Fähigkeit, größere Mengen an Texten zu verarbeiten, hat für praktische Anwendungen interessante Auswirkungen. Obwohl ChatGPT bereits über eine sehr gute Zusammenfassungsfähigkeit für kurze Texte verfügt, besteht nun die Möglichkeit, diese Fähigkeit auch auf vollständige Dokumente auszudehnen.
#5 Logische Fehler und Falschaussagen treten weniger häufig auf
Das ist neu
Im direkten Vergleich mit seinem Vorgänger weist der Output von GPT-4 weniger Falschaussagen und Widersprüche auf. Außerdem wurde der Umgang mit Anfragen, die gegen Richtlinien verstoßen, verbessert.
Unsere Einschätzung dazu
Obwohl GPT-4 einige Verbesserungen aufweist, bleibt die Verlässlichkeit des Modeloutputs ein erhebliches Problem, das die Nutzung des Modells einschränkt. Die generierten Texte können nach wie vor von Vorurteilen geprägt sein und Desinformationen enthalten, die sorgfältig geprüft werden sollten.
Ausblick
In der Welt der künstlichen Intelligenz hat OpenAI mit der Veröffentlichung von GPT-4 zweifellos ein spannendes Upgrade seines GPT-3-Modells vorgenommen. Die neuen Funktionen von GPT-4 sind interessant, da sie die Leistung und die Fähigkeiten von KI in vielen Bereichen verbessern können.
Dennoch gibt es einige Einschränkungen und Bedenken, die mit GPT-4 verbunden sind. Im Gegensatz zu früheren Veröffentlichungen ist OpenAI leider deutlich weniger transparent in Bezug auf Modelldetails. So stehen der Öffentlichkeit nur stark begrenzte Informationen über die Modelarchitektur, den Trainingsansatz oder die Datengrundlage des Modells zur Verfügung. Dies macht es beispielsweise schwierig einzuschätzen, inwieweit das Modell Vorurteile übernommen haben könnte, die eine Nutzung beeinflussen.
GPT-4 stellt im Vergleich zu seinem Vorgänger eine Verbesserung dar, aber nicht unbedingt einen großen Schritt nach vorne. Obwohl es einige neue Funktionen gibt, sind diese nicht so revolutionär wie einige erhofft hatten. Es ist daher sehr wichtig, dass wir realistische Erwartungen an die Fähigkeiten von GPT-4 haben und Leistungen und Grenzen des Modells sollten sorgfältig prüfen, bevor wir es in verschiedenen Anwendungen einsetzen. So kann sichergestellt werden, dass die Technologie im Rahmen ihrer derzeitigen Möglichkeiten gewinnbringend eingesetzt wird.
Eine Datenkultur ist ein Schlüsselfaktor für die effektive Datennutzung
Mit der zunehmenden Digitalisierung ist die Fähigkeit, Daten effektiv zu nutzen, zu einem entscheidenden Erfolgsfaktor für Unternehmen geworden. Diese Denk- und Handlungsweise wird oft als Datenkultur bezeichnet und spielt eine entscheidende Rolle bei der Umwandlung eines Unternehmens in eine datengesteuerte Organisation. Durch die Förderung einer Datenkultur können Unternehmen von der Flexibilität einer faktenbasierten Entscheidungsfindung profitieren und das Potenzial ihrer Daten voll ausschöpfen. Eine solche Kultur ermöglicht schnellere und nachweislich bessere Entscheidungen und verankert datengetriebene Innovation im Unternehmen.
Obwohl Notwendigkeit und Nutzen einer Datenkultur offensichtlich erscheinen, scheitern dennoch viele Unternehmen an der Herausforderung eine solche Kultur zu etablieren. Einer Studie von New Vantage Partners zur Folge, konnten bisher nur 20% der Unternehmen erfolgreich eine Datenkultur entwickeln. Weiter bezeichnen über 90% der befragten Unternehmen die Veränderung der Kultur als größte Hürde bei der Transformation zum datengetriebenen Unternehmen.
Eine Datenkultur verändert die Arbeitsweise fundamental
Die Ursachen für diese Herausforderung sind vielfältig und die erforderlichen Veränderungen durchdringen nahezu alle Aspekte des Arbeitsalltages. In einer effektiven Datenkultur nutzt jede:r Mitarbeiter:in bevorzugt Daten und Datenanalysen zur Entscheidungsfindung und räumt Daten und Fakten Priorität gegenüber dem individuellen „Bauchgefühl“ ein. Diese Denkweise fördert die stetige Suche nach Möglichkeiten der Datennutzung, um so Wettbewerbsvorteile zu identifizieren, neue Einnahmequellen zu erschließen, Prozesse zu optimieren und bessere Vorhersagen zu treffen. Indem sie sich eine Datenkultur zu eigen machen, können Unternehmen das volle Potenzial ihrer Daten ausschöpfen und Innovationen im gesamten Unternehmen vorantreiben. Das bedingt, dass Daten als wichtige Triebkraft für Entscheidungsfindung und Innovation erkannt werden. Dieses Idealbild stellt neue Anforderungen an das individuelle Verhalten der Mitarbeitenden. Darüber hinaus erfordert dies auch eine gezielte Unterstützung dieses Verhaltens durch geeignete Rahmenbedingungen wie eine technische Infrastruktur und organisatorische Abläufe.
Drei Faktoren prägen die Datenkultur maßgeblich
Um eine Datenkultur nachhaltig im Unternehmen zu verankern, sind vor allem drei Faktoren entscheidend:
- Können | Fähigkeiten
- Wollen | Einstellung
- Machen | Verhalten
statworx nutzt diese drei Faktoren, um einerseits das abstrakte Konzept der Datenkultur greifbar zu machen und andererseits, um gezielt notwendige Veränderungen anzustoßen.
Dabei ist es entscheidend, allen Faktoren gleichermaßen Aufmerksamkeit zu schenken und sie möglichst ganzheitlich zu beachten. Häufig beschränken sich Initiativen zur Kulturentwicklung auf den Aspekt der Einstellung und versuchen bestimmte Werte losgelöst von anderen Einflussfaktoren zu verankern. Diese Initiativen scheitern dann meist an der Realität der Unternehmen, die mit ihren Prozessen, gelebten Ritualen, Praktiken und Werten entgegenstehen und somit die Etablierung der Kultur (aktiv) verhindern.
Zur Übersicht haben wir drei Faktoren der Datenkultur in einem Framework festgehalten.
1. Können: Fähigkeiten bilden die Basis für effektive Datennutzung
Fähigkeiten und Fertigkeiten bilden die Grundlage für den effektiven Umgang mit Daten. Diese umfassen zum einen die methodischen und fachlichen Fähigkeiten der Mitarbeitenden und zum anderen die Fähigkeit der Organisation, Daten nutzbar zu machen.
Für die Nutzbarkeit der Daten ist dabei die Sicherstellung der Datenverfügbarkeit von besonderer Bedeutung. Der „FAIR“-Standard – Findable, Accessible, Interoperable, Reusable – gibt eine Richtung vor, welche Eigenschaften dabei wesentlich sind. Diese können zum Beispiel durch Technologien, Wissensmanagement und eine geeignete Governance unterstützt werden.
Auf Ebene der Fähigkeiten der Mitarbeitenden liegt der Schwerpunkt auf Data Literacy (=Datenkompetenz) – der Fähigkeit, Daten zu verstehen und effektiv zu nutzen, um fundierte Entscheidungen zu treffen. Dazu gehört ein grundlegendes Verständnis von Datentypen und Strukturen, wie auch Erhebungs- und Analysemethoden. Data Literacy beinhaltet auch die Fähigkeit, die richtigen Fragen zu stellen, Daten richtig zu interpretieren und Muster und Trends zu erkennen. Bauen Sie relevante Kompetenzen, zum Beispiel durch Upskilling, gezielte Personalplanung und Einstellung von Datenexperten auf.
2. Wollen: Eine Datenkultur kann nur in passendem Wertekontext gedeihen
Der zweite Faktor – Wollen – befasst sich mit den Einstellungen und Absichten der Mitarbeitenden und der Organisation als Ganzes gegenüber der Nutzung von Daten. Dafür müssen sowohl die Überzeugungen und Werte von Individuen als auch der Gemeinschaft im Unternehmen adressiert werden. Für die Datenkultur sind dabei vier Aspekte von zentraler Bedeutung:
- Zusammenarbeit & Gemeinschaft statt Konkurrenz
- Transparenz & Teilen statt Informationsverschleierung & Datenhortung
- Pilotprojekte & Experimente statt theoretischer Einschätzung
- Offenheit & Lernbereitschaft statt Kleinlichkeit & starrer Denkweise
- Daten als zentrale Entscheidungsgrundlage statt individueller Meinung & Bauchgefühl
Fallbeispiel: Unternehmen ohne Datenkultur
Auf individueller Ebene ist ein:e Mitarbeiter:in davon überzeugt, dass man sich mit exklusivem Wissen und Daten einen Vorteil verschaffen kann. Die Person hat innerhalb der Organisation außerdem gelernt, dass sich so strategische Vorteile oder Möglichkeiten zur eigenen Positionierung ergeben, und wurde in der Vergangenheit von Vorgesetzten für solches Verhalten belohnt. Die Person ist also davon überzeugt, dass es absolut sinnvoll und vorteilhaft ist, Daten für sich oder innerhalb des eigenen Teams zu behalten und nicht mit anderen Abteilungen zu teilen. Das Konkurrenzdenken und die Tendenz zur Geheimhaltung sind als Wert fest verankert.
Generell schränkt ein Verhalten wie im Fallbeispiel beschrieben, die Transparenz im gesamten Unternehmen ein und bremst dadurch die Organisation aus. Wenn nicht alle dieselben Informationen haben, ist es schwierig, die bestmögliche Entscheidung für das gesamte Unternehmen zu treffen. Nur durch Offenheit und Kollaboration kann der wahre Wert der Daten im Unternehmen genutzt werden. Ein datengetriebenes Unternehmen basiert auf einer Kultur der Zusammenarbeit, des Teilens und des Lernens. Wenn Menschen dazu ermutigt werden, ihre Ideen und Erkenntnisse auszutauschen, können bessere Entscheidungen getroffen werden.
Auch mögliche Absichtserklärungen, wie Leitbilder und Manifeste ohne greifbare Maßnahmen, werden an der Einstellung der Mitarbeitenden nur wenig ändern. Die große Herausforderung besteht darin, die Werte nachhaltig zu verankern und für alle Mitarbeitenden zur leitenden Handlungsprämisse zu machen, die im Unternehmensalltag aktiv gelebt wird. Gelingt dies, ist die Organisation auf dem besten Weg das erforderliche Data Mindset zu schaffen, um eine effektive und erfolgreiche Datenkultur zum Leben zu erwecken. Bei der Etablierung und Sichtbarmachung dieser Werte kann zum Beispiel unser Transformations-Framework helfen.
Wir empfehlen den Aufbau einer Datenkultur Schritt für Schritt zu beginnen, denn bereits kleine experimentelle Projekte schaffen Mehrwert, dienen als Positivbeispiel und schaffen Vertrauen. Die praktische Erprobung einer neuen Innovation, selbst nur in einem begrenzten Rahmen, bringt erfahrungsgemäß schneller und bessere Resultate als eine theoretische Einschätzung. Letztlich geht es darum, den Wert von Daten in den Vordergrund zu stellen.
3. Machen: Verhalten schafft den Rahmen und ist gleichzeitig sichtbares Resultat der Datenkultur
Die beiden zuvor genannten Faktoren zielen letztendlich darauf ab, dass Mitarbeitende und die Organisation als Gesamtkonstrukt ihr Verhalten anpassen. Nur aktiv gelebte Datenkultur kann erfolgreich sein. Das alltägliche Verhalten – das Machen – spielt demnach eine zentrale Rolle bei der Etablierung einer Datenkultur.
Das Verhalten der Organisation lässt sich vor allem in zwei Dimensionen betrachten und gleichzeitig durch Veränderungen prägen.
- Aktivitäten und Rituale
- Strukturelemente der Organisation
Aktivitäten und Rituale:
Aktivitäten und Rituale beziehen sich auf die alltägliche Zusammenarbeit zwischen den Mitarbeitenden einer Organisation. Sie äußern sich in allen Formen der Zusammenarbeit, von den Abläufen in Meetings, über den Umgang mit Feedback und Risiken bis hin zur jährlichen Weihnachtsfeier. Dabei ist entscheidend, welchen Mustern das Miteinander folgt und welches Verhalten belohnt bzw. bestraft wird.
Erfahrungsgemäß fällt die Transformation zu datengetriebenen Entscheidungen den Teams leichter, welche bereits mit agilen Methoden wie Scrum vertraut sind. Teams, welche wiederrum starken Hierarchien folgen und risikoavers agieren, bewältigen diese Herausforderung weniger leicht. Ein Grund dafür ist, dass agile Arbeitsweisen Zusammenarbeit verschiedener Rollen bekräftigen, und so das Fundament für ein produktives Arbeitsumfeld schaffen. In diesem Kontext ist die Rolle der Führung, insbesondere des Senior Leaderships, von entscheidender Bedeutung. Die Personen auf C-Level müssen zwingend von Beginn an das erwünschte Verhalten vorleben, Rituale und Aktivitäten einführen und gemeinsam als zentraler Treiber der Transformation agieren.
Strukturelemente der Organisation:
Während Aktivitäten und Rituale aus den Teams heraus entstehen und nicht immer vorgegeben werden, bildet die zweite Dimension eine stärkere Formalisierung ab. Sie bezieht sich auf die Strukturelemente einer Organisation. Diese bilden den formalen Rahmen für Entscheidungen und prägen dadurch auch das Verhalten, sowie die Entstehung und Verankerung von Werten und Einstellungen.
Dabei wird zwischen internen und externen Strukturelementen unterschieden. Interne Strukturelemente sind vor allem innerhalb der Organisation sichtbar – zum Beispiel Rollen, Prozesse, Hierarchieebenen, oder Gremien. Durch die Anpassungen und Umstrukturierung von Rollen können erforderliche Skills im Unternehmen abgebildet werden. Weiter können Belohnungen und Beförderungen für Mitarbeitende einen Anreiz schaffen das Verhalten selbst anzunehmen und an Kolleg:innen weiterzugeben. Auch die Aufteilung der Arbeitsumgebung ist ein Teil der internen Struktur. Da die Arbeitsweise in datengetriebenen Unternehmen auf enger Zusammenarbeit beruht und Personen mit verschieden Fähigkeiten braucht. Daher bietet es sich an einen Raum für offenen Austausch zu schaffen, der Kommunikation und Kollaboration zulässt.
Externe Strukturelemente spiegeln internes Verhalten nach außen. Demnach beeinflussen die internen Strukturelemente, die Wahrnehmung des Unternehmens von außen. Dies zeigt sich beispielsweise durch eine klare Kommunikation, den Aufbau der Webseite sowie durch Stellenausschreibungen und Marketingbotschaften.
Unternehmen sollten ihr äußeres Verhalten so gestalten, dass es mit den Werten der Organisation übereinstimmt und somit eigene Strukturen unterstützt. Auf diese Weise kann eine harmonische Abstimmung zwischen der internen und der externen Positionierung der Firma erreicht werden.
Erste, kleine Schritte können bereits große Veränderungen schaffen
Unsere Erfahrung hat gezeigt, dass die aufeinander abgestimmte Gestaltung von Können, Wollen und Machen in eine nachhaltige Datenkultur resultiert. Nun ist klar, dass eine Datenkultur nicht von heute auf morgen geschaffen werden kann, aber es auch nicht mehr ohne geht. Es hat sich bewährt diese Herausforderung in kleine Schritte zu unterteilen. Mit ersten Pilotprojekten, wie beispielsweise der Etablierung der Datenkultur in nur einem Team und Initiativen für besonders engagierte Mitarbeitende, die den Wandel vorantreiben wollen, wird Vertrauen in den Kulturwandel geschaffen. Positive Einzelerlebnisse dienen als hilfreicher Katalysator für den Wandel der gesamten Organisation.
Der Philosoph und Visionär R. Buckminster Fuller hat dazu gesagt „Man bewirkt niemals eine Veränderung, indem man das Bestehende bekämpft. Um etwas zu verändern, schafft man neue Dinge oder geht andere Wege, die das Alte überflüssig machen.“ Denn mit der Weiterentwicklung der Technologie müssen Unternehmen in der Lage sein, sich anzupassen, um das gesamte Potential auszuschöpfen. So können Entscheidungen schneller und genauer als je zuvor getroffen, Innovation vorangetrieben und Prozesse zunehmend optimiert werden. Die nachhaltige Etablierung einer Datenkultur wird Unternehmen einen Wettbewerbsvorteil auf dem Markt verschaffen. In der Zukunft wird die Datenkultur ein wesentlicher Bestandteil jeder erfolgreichen Geschäftsstrategie sein. Unternehmen, die dies nicht annehmen, bleiben zurück.
Jedoch ist die Nutzung von Daten für viele Unternehmen ein großes Problem. Oft stehen die Datenqualität und die Zusammenstellung der Daten im Weg. Auch wenn in vielen Unternehmen bereits Datenlösungen vorhanden sind, werden sie nicht optimal genutzt. So bleiben viele Informationen ungenutzt und können nicht in die Entscheidungsfindung einfließen.
Quellen:
[1] https://hbr.org/2020/03/how-ceos-can-lead-a-data-driven-culture
Bild: AdobeStock 569760113
In einer schnelllebigen und datengesteuerten Welt ist die Verwaltung von Informationen und Wissen essenziell. Insbesondere Unternehmen sind darauf angewiesen, Wissen intern so schnell, verständlich und knapp wie möglich zugänglich zu machen. Knowledge Management ist der Prozess der Schaffung, Extraktion und Nutzung von Wissen zur Verbesserung der Unternehmensleistung. Es umfasst Methoden, die Organisationen dabei helfen, Wissen zu identifizieren und zu extrahieren, zu verteilen und zu nutzen, um ihre Ziele besser zu erreichen. Dies kann jedoch eine komplexe und schwierige Aufgabe sein, insbesondere in großen Unternehmen.
Natürliche Sprachverarbeitung (NLP) verspricht hier Abhilfe. Diese Technologie hat das Potenzial, die Knowledge-Strategie von Unternehmen zu revolutionieren. NLP ist ein Zweig der künstlichen Intelligenz, der sich mit der Interaktion zwischen Computern und menschlicher Sprache befasst. Durch den Einsatz von NLP können Unternehmen Erkenntnisse aus großen Mengen unstrukturierten Textmengen gewinnen und diese in verwertbares Wissen umwandeln.
In diesem Blogbeitrag untersuchen wir anhand eines Fallbeispiels, wie NLP Knowledge Management verbessern kann und wie Unternehmen NLP nutzen können, um komplexe Prozesse schnell, sicher und automatisiert durchzuführen. Wir untersuchen die Vorteile des Einsatzes von NLP im Knowledge Management, welche verschiedenen NLP-Techniken dabei zum Einsatz kommen und wie Unternehmen NLP einsetzen können, um mithilfe von künstlicher Intelligenz ihre Ziele besser erreichen zu können.
Fallbeispiel für effektives Knowledge Management
Am Fallbeispiel des E-Mail-Verkehrs in einem Bauprojekt wollen wir die Anwendung und den Mehrwert natürlicher Sprachverarbeitung illustrieren. Dabei nutzen wir zwei E-Mails als konkrete Beispiele, die während des Bauprojekts ausgetauscht wurden: eine Auftragsbestätigung für bestellte Artikel und eine Beschwerde über deren Qualität.
Für einen Neubau hat der Bauherr bei einer Vielzahl von Zulieferern Angebote für Produkte eingeholt, unter anderem auch für Wärmedämmungen. Schlussendlich wurden diese bei einem Zulieferer bestellt. In einer E-Mail klärt der Zulieferer den Bauherrn über die bestellten Artikel, deren Eigenschaften und Kosten auf und bestätigt gleichzeitig die Lieferung zu einem festgelegten Datum. Zu einem späteren Zeitpunkt stellt der Bauherr fest, dass die Qualität der gelieferten Produkte nicht den erhofften Standards entsprechen. Diesen Umstand teilt der Bauherr dem Zulieferer in einer schriftlichen Beschwerde auch als E-Mail mit. Im Fließtext dieser E-Mails ist eine Fülle von Informationen erhalten, die sich mittels NLP-Methoden herausschälen, aufbereiten und zum besseren Verständnis weiterverarbeiten lassen. Durch die große Fülle an verschiedenen Angeboten und Interaktionen wird die manuelle Bearbeitung sehr aufwändig – programmatische Auswertung der Kommunikation verschafft hierbei Abhilfe.
Im Folgenden stellen wir eine Knowledge Management Pipeline vor, die schrittweise diese beiden E-Mails auf ihre Inhalte prüft, und den Usern durch Textverarbeitung den jeweils größtmöglichen Nutzen bietet. Jetzt einfach auf die interaktiven Felder klicken, um zu sehen, wie die Knowledge Management Pipeline funktioniert!
Zusammenfassung (Task: Summarization)
In einem ersten Schritt kann der Inhalt jedes Textes zusammengefasst und in wenigen Sätzen auf den Punkt gebracht werden. Dies reduziert den Fließtext auf Wichtiges (wie Informationen und Wissen), entfernt Unwichtiges (wie Floskeln und Wiederholungen) und verringert stark die Menge an zu lesendem Text.
Besonders bei langen E-Mails ist der Mehrwert allein durch die Zusammenfassung enorm: Die Auflistung der wichtigen Inhalte als Stichpunkte spart Zeit, verhindert Missverständnisse und das Übersehen wichtiger Details.
Allgemeine Zusammenfassungen sind bereits hilfreich, aber mithilfe der neusten Sprachmodelle kann NLP noch einiges mehr. Bei einer allgemeinen Zusammenfassung wird die Textlänge bei gleichbleibender Informationsdichte so weit wie möglich reduziert. Große Sprachmodelle können nicht nur eine allgemeine Zusammenfassung produzieren, sondern diesen Vorgang auch an spezifische Bedürfnisse der Mitarbeitenden anpassen. So können zum Beispiel Fakten hervorgehoben, oder technisches Jargon vereinfacht werden. Insbesondere lassen sich Zusammenfassungen für ein spezifisches Publikum, beispielweise eine bestimmte Abteilung im Unternehmen, durchführen.
Für unterschiedliche Abteilungen und Rollen sind unterschiedliche Informationen relevant. Deshalb sind Zusammenfassungen besonders dann nützlich, wenn sie spezifisch auf die Interessen einer Abteilung oder Rolle zugeschnitten sind. So enthalten die beiden E-Mails aus unserem Fallbeispiel Informationen, die für die Rechts-, Operations- oder Finanzabteilung unterschiedlich relevant sind. Deshalb wird in einem nächsten Schritt für jede Abteilung je eine separate Zusammenfassung erstellt:
Dadurch fällt es den Nutzer:innen noch leichter, die für sie relevanten Informationen zu erkennen und zu verstehen und gleichzeitig die richtigen Schlüsse für ihre Arbeit zu ziehen.
Generative NLP-Modelle ermöglichen es nicht nur, Texte auf das Wesentliche herunterzubrechen, sondern auch Erklärungen zu Unklarheiten und Details zu liefern. Ein Beispiel dafür ist die Erklärung einer in der Auftragsbestätigung nur mit Akronym genannten Verordnung, deren Details der User möglicherweise nicht präsent sind. Dadurch entfällt eine lästige Onlinesuche nach einer passenden Erklärung.
Knowledge Extraction (Task: NER, Sentiment Analysis, Classification)
Als nächster Schritt sollen die E-Mails und ihre Inhalte systematisch kategorisiert werden. Dadurch lassen sich eingegangene E-Mails beispielsweise den korrekten Postfächern automatisch zuweisen, mit Metadaten versehen und strukturiert sammeln.
So können E-Mails, die auf einem Kundendienstkonto eingehen, automatisch nach definierten Kategorien klassifiziert werden (Beschwerden, Anfragen, Anregungen, etc). Dadurch entfällt die händische Einteilung in Kategorien, was wiederum die Anfälligkeit für falsche Einteilungen vermindert und für robustere Abläufe sorgt.
Innerhalb dieser Kategorien können die Inhalte von E-Mails erneut anhand semantischer Inhaltsanalyse unterteilt werden, um beispielsweise die Dringlichkeit einer Anfrage zu bestimmen. Dazu gleich noch mehr.
Sind die E-Mails einmal korrekt klassifiziert, so können mittels „Named Entitiy Recognition (NER)“ Metadaten aus jedem Text extrahiert und angelegt werden.
NER ermöglicht es, die Entitäten in Texten zu identifizieren und zu benennen. Entitäten können Personen, Orte, Organisationen, Daten oder andere benannte Objekte sein. In Bezug auf E-Mail-Eingänge und deren Inhalten kann NER hilfreich sein, um wichtige Informationen und Zusammenhänge innerhalb der Texte zu extrahieren. Durch die Identifizierung und Kategorisierung von Entitäten können die relevanten Informationen schnell gefunden und klassifiziert werden.
Bei Beschwerden kann NER verwendet werden, um die Namen des Produkts, des Kunden und des Verkäufers zu identifizieren. Diese Informationen können dann verwendet werden, um das Problem zu lösen oder Änderungen an dem Produkt vorzunehmen, um künftige Beschwerden zu vermeiden.
NER kann auch dazu beitragen, dass nach der Klassifizierung, in E-Mails automatisch die relevanten Fakten und Zusammenhänge hervorgehoben werden. Wenn beispielsweise eine Bestellung als E-Mail von einem Kunden eingeht, dann kann NER die relevanten Informationen extrahieren, die E-Mail damit als Metadaten anreichern und automatisch an entsprechende Vertriebsmitarbeiter:innen weiterleiten.
Similarity (Task: Semantic Similarity)
Erfolgreiches Knowledge Management erfordert zunächst, relevante Daten, Fakten und Dokumente zu identifizieren und zielgerichtet zusammenzutragen. Bei unstrukturierten Textdaten wie E-Mails, die zudem in Informationssilos (also Postfächern) lagern, war dies bislang eine besonders schwierige Aufgabe. eingegangener E-Mails und deren Überschneidungen noch besser zu erfassen, können Methoden zur semantischen Analyse von Texten eingesetzt werden. „Semantic Similarity Analysis“ ist eine Technologie, die verwendet wird, um die Bedeutung von Texten zu verstehen und die Ähnlichkeiten zwischen unterschiedlichen Texten zu messen.
Im Kontext von Knowledge Management kann semantische Analyse dabei helfen, E-Mails zu gruppieren und diejenigen zu identifizieren, die sich auf dasselbe Thema beziehen oder ähnliche Anfragen enthalten. Auf diese Weise kann die Produktivität von Kundensupport-Teams gesteigert werden, indem sie sich auf die wichtigen Aufgaben konzentrieren können, anstatt viel Zeit damit zu verbringen, E-Mails manuell zu sortieren oder zu suchen.
Darüber hinaus kann semantische Analyse dazu beitragen, Trends und Muster in den eingehenden E-Mails zu erkennen, die möglicherweise auf Probleme oder Optionen für Verbesserungen im Unternehmen hinweisen. Diese Erkenntnisse können dann genutzt werden, um proaktiv auf Kundenbedürfnisse einzugehen oder um Prozesse und Produkte zu verbessern.
Answer Generation (Task: Text Generation)
Zu guter Letzt sollen E-Mails auch beantwortet werden. Wer bereits mit Textvorschlägen in Mailprogrammen experimentiert hat weiß, dass diese Aufgabe wohl noch nicht bereit ist zur Automatisierung. Allerdings können generative Modelle dabei helfen, E-Mails schneller und präziser zu beantworten. Ein generatives Sprachmodell kann auf Basis der eingegangenen E-Mails schnell und zuverlässig Antwortvorlagen generieren, die dann von der bearbeitenden Person lediglich ergänzt, vervollständigt und überprüft werden müssen. Wichtig dabei ist die genaue Überprüfung jeder Antwort vor dem Versand, denn generative Modelle sind dafür bekannt, Resultate zu halluzinieren, also überzeugende Antworten zu generieren, die bei näherer Betrachtung inhaltlich aber Fehler aufweisen. Auch hier können KI-Systeme zumindest teilweise Abhilfe schaffen, indem sie Fakten und Aussagen dieser „Antwortmodelle“ mit einem „Kontrollmodell“ auf Richtigkeit prüfen.
Fazit
Natürliche Sprachverarbeitung (NLP) bietet Unternehmen zahlreiche Möglichkeiten, um ihre Knowledge Management-Strategien zu verbessern. NLP versetzt uns in die Lage, aus unstrukturiertem Text Informationen präzise zu extrahieren und die Verarbeitung und Bereitstellung von Wissen für Mitarbeitende zu optimieren.
Durch die Anwendung von NLP-Methoden auf E-Mails, Dokumente und andere Textquellen können Unternehmen die Inhalte automatisch kategorisieren, zusammenfassen und auf die wichtigsten Informationen reduzieren. Dadurch können Mitarbeitende schnell und einfach auf wichtige Informationen zugreifen, ohne sich durch lange Seiten von Text kämpfen zu müssen. Dies spart Zeit, verringert die Fehleranfälligkeit und trägt dazu bei, bessere Geschäftsentscheidungen zu treffen.
Im Rahmen eines Bauprojekts haben wir gezeigt, wie NLP in der Praxis eingesetzt werden kann, um E-Mails effizienter zu verarbeiten und die Verwaltung von Wissen zu verbessern. Die Anwendung von NLP-Techniken, wie der Zusammenfassung und der Spezifizierung von Informationen für bestimmte Abteilungen, kann Unternehmen dabei helfen, ihre Ziele besser zu erreichen und ihre Leistungen zu verbessern.
Die Anwendung von NLP im Knowledge Management bietet große Vorteile für Unternehmen. Es kann dabei helfen, Prozesse zu automatisieren, die Zusammenarbeit zu verbessern, die Effizienz zu steigern und die Qualität von Entscheidungen zu optimieren. Unternehmen, die NLP in ihre Knowledge Management-Strategie integrieren, können wertvolle Erkenntnisse gewinnen, die es ihnen ermöglichen, sich in einem immer komplexer werdenden Geschäftsumfeld besser zurechtzufinden.
Bildquelle: AdobeStock 459537717
Es ist kein Geheimnis, dass die neuesten Sprachmodelle wie ChatGPT unsere kühnsten Erwartungen weit übertroffen haben. Es ist beeindruckend und erscheint einigen fast unheimlich, dass ein Sprachmodell sowohl ein breites Wissen besitzt als auch die Fähigkeit hat, (fast) jede Frage glaubhaft zu beantworten. Wenige Stunden nach Veröffentlichung dieses Modells begannen bereits die Spekulationen darüber, welche Tätigkeitsfelder durch diese Modelle bereichert, oder womöglich sogar ersetzt werden können, welche Anwendungsfälle sich umsetzen lassen und welche der vielen neuen durch ChatGPT entstandenen Start-Up Ideen sich durchsetzen wird.
Es steht außer Frage, dass die kontinuierliche Weiterentwicklung der Künstlichen Intelligenz an Dynamik gewinnt. Während ChatGPT auf einer dritten Modellgeneration basiert, steht ein “GPT-4” bereits in den Startlöchern und Konkurrenzprodukte warten ebenfalls auf ihren großen Moment.
Als Entscheidungsträger in einem Unternehmen ist es jetzt wichtig zu verstehen, wie diese Fortschritte tatsächlich wertsteigernd eingesetzt werden können. In diesem Blogbeitrag widmen wir uns daher den Hintergründen statt dem Hype, geben Beispiele für konkrete Anwendungsfälle in der Unternehmenskommunikation, und legen insbesondere dar, wie eine Implementierung dieser KI-Systeme erfolgreich erfolgen kann.
Was ist ChatGPT?
Stellt man ChatGPT diese Frage, so erhält man die folgende Antwort:
“Chat GPT ist ein großer Sprachmodell, der von OpenAI trainiert wurde, um natürliche Sprache zu verstehen und zu generieren. Es nutzt die Technologie des Deep Learning und der künstlichen Intelligenz, um menschenähnliche Konversationen mit Benutzern zu führen.”
ChatGPT ist der neueste Vertreter aus einer Klasse an KI-Systemen, die menschliche Sprache (also Texte) verarbeiten. Hierbei spricht man von „Natural Language Processing“, kurz NLP. Es ist das Produkt einer ganzen Kette von Innovationen, die im Jahr 2017 mit einer neuen KI-Architektur begann. In den darauffolgenden Jahren wurden auf dieser Basis die ersten KI-Modelle entwickelt, die in Punkto Sprachverständnis das menschliche Niveau erreichten. In den letzten zwei Jahren lernten die Modelle dann zu schreiben und mit Hilfe von ChatGPT sogar mit dem Benutzer ganze Konversationen zu führen. Im Vergleich zu anderen Modellen zeichnet sich ChatGPT dadurch aus, glaubhafte und passende Antworten auf Nutzeranfragen zu generieren.
Neben ChatGPT gibt es inzwischen viele weitere Sprachmodelle in unterschiedlichen Formen: open-source, proprietär, mit Dialogoption oder auch mit anderen Fähigkeiten. Dabei stellte sich schnell heraus, dass diese Fähigkeiten mit größeren Modellen und mehr (insbesondere qualitativ hochwertigen) Daten kontinuierlich gewachsen sind. Anders als vielleicht ursprünglich zu erwarten war, scheint es dabei kein oberes Limit zu geben. Im Gegenteil: je größer die Modelle, desto mehr Fähigkeiten gewinnen sie!
Diese sprachlichen Fähigkeiten und die Vielseitigkeit von ChatGPT sind erstaunlich, doch der Einsatz derartig großer Modelle ist nicht gerade ressourcenschonen. Große Modelle wie ChatGPT werden von externen Anbietern betrieben, die für jede Anfrage an das Modell in Rechnung stellen. Außerdem erzeugt jede Anfrage an größere Modelle nicht nur mehr Kosten, sondern verbraucht auch mehr Strom und belastet damit die Umwelt.
Dabei erfordern zum Beispiel die meisten Chatanfragen von Kunden kein umfassendes Wissen über die gesamte Weltgeschichte oder die Fähigkeit, auf jede Frage amüsante Antworten zu geben. Stattdessen können bestehende Chatbot-Dienste, die auf Unternehmensdaten zugeschnitten sind, durchaus prägnante und akkurate Antworten zu einem Bruchteil der Kosten liefern.
Moderne Sprachmodelle im Unternehmenseinsatz
Warum wollen dennoch viele Entscheidungsträger in den Einsatz von großen Sprachmodelle wie ChatGPT investieren?
Die Antwort liegt in der Integration in organisatorische Prozesse. Große generative Modelle wie ChatGPT ermöglichen uns erstmals den Einsatz von KI in jeder Phase der geschäftlichen Interaktion. Zunächst in der eingehenden Kundenkommunikation, der Kommunikationsplanung und -organisation, dann in der ausgehenden Kundenkommunikation und der Interaktionsdurchführung, und letztendlich im Bereich der Prozessanalyse und -verbesserung.
Im Folgenden gehen wir genauer darauf ein, wie KI diese Kommunikationsprozesse optimieren und rationalisieren kann. Dabei wird schnell deutlich werden, dass es hier nicht nur darum geht, ein einziges fortschrittliches KI-Modell anzuwenden. Stattdessen zeigt sich, dass nur eine Kombination von mehreren Modellen die Problemstellungen sinnvoll angehen kann und in allen Phasen der Interaktion den gewünschten wirtschaftlichen Nutzen bringt.
KI-Systeme gewinnen beispielsweise in der Kommunikation mit Lieferanten oder mit anderen Stakeholdern zunehmend an Relevanz. Um den revolutionären Einfluss von neuen KI-Modellen möglichst konkret darzustellen, betrachten wir jedoch die Art von Interaktion, die für jedes Unternehmen lebensnotwendig ist: Die Kommunikation mit dem Kunden.
Use Case 1: Eingehende Kundenkommunikation mit KI
Herausforderung
Kundenanfragen gelangen über verschiedene Kanäle (E-Mails, Kontaktformulare über die Website, Apps etc.) in das CRM-System und initiieren interne Prozesse und Arbeitsschritte. Leider ist der Prozess oft ineffizient und führt zu Verzögerungen und erhöhten Kosten, da Anfragen falsch zugewiesen oder in einem einzigen zentralen Postfach landen. Bestehende CRM-Systeme sind meist nicht vollständig in die organisatorischen Arbeitsabläufe integriert und erfordern weitere interne Prozesse, die auf organisch gewachsenen Routinen oder organisatorischem Wissen einer kleinen Anzahl von Mitarbeitenden basieren. Dies mindert die Effizienz und führt zu mangelnder Kundenzufriedenheit und hohen Kosten.
Lösung
Kundenkommunikation kann für Unternehmen eine Herausforderung darstellen, aber KI-Systeme können dabei helfen, diese zu automatisieren und zu verbessern. Mithilfe von KI kann die Planung, Initiierung und Weiterleitung von Kundeninteraktionen effektiver gestaltet werden. Das System kann automatisch Inhalte und Informationen analysieren und auf der Grundlage geeigneter Eskalationsniveaus entscheiden, wie die Interaktion am besten abgewickelt werden kann. Moderne CRM-Systeme sind bereits in der Lage, Standardanfragen mithilfe von kostengünstigen Chatbots oder Antwortvorlagen zu bearbeiten. Aber wenn die KI erkennt, dass eine anspruchsvollere Anfrage vorliegt, kann sie einen KI-Agenten wie ChatGPT oder einen Kundendienstmitarbeiter aktivieren, um die Kommunikation zu übernehmen.
Mit den heutigen Errungenschaften im NLP-Bereich kann ein KI-System aber weitaus mehr. Relevante Informationen können aus Kundenanfragen extrahiert und an die zuständigen Personen im Unternehmen weitergeleitet werden. So kann beispielsweise ein Key-Account-Manager Empfänger der Kundennachricht sein, während gleichzeitig ein technisches Team mit den notwendigen Details informiert wird. Auf diese Weise können komplexere Szenarien, die Organisation des Supports, die Verteilung der Arbeitslast und die Benachrichtigung von Teams über Koordinierungsbedarf bewältigt werden. Dabei werden diese Abläufe nicht manuell definiert werden, sondern vom KI-System gelernt.
Lesen Sie auch unser Whitepaper, in dem wir 4 Blueprints für KI-Modelle in der Kommunikation mit Kunden und Lieferanten vorstellen
Die Implementierung eines integrierten Systems kann die Effizienz von Unternehmen steigern, Verzögerungen und Fehler reduzieren und letztlich zu höherem Umsatz und Gewinn führen.
Use Case 2: Ausgehende Kundenkommunikation mit KI
Herausforderung
Kunden setzen voraus, dass ihre Anfragen umgehend, transparent und präzise beantwortet werden. Eine verzögerte oder inkorrekte Reaktion, ein mangelndes Informationsniveau oder eine unkoordinierte Kommunikation zwischen verschiedenen Abteilungen stellen Vertrauensbrüche dar, die sich langfristig negativ auf die Kundenbeziehung auswirken können.
Bedauerlicherweise sind negative Erfahrungen bei vielen Unternehmen an der Tagesordnung. Dies liegt häufig daran, dass die in bestehenden Lösungen implementierten Chatbots Standardantworten und Templates verwenden und nur selten in der Lage sind, Kundenanfragen umfassend und abschließend zu beantworten. Im Gegensatz dazu verfügen fortgeschrittene KI-Agenten wie ChatGPT über eine höhere kommunikative Fähigkeit, die eine reibungslose Kundenkommunikation ermöglicht.
Wenn die Anfrage dann doch zu den richtigen Mitarbeitenden aus dem Kundendienst gelangt, kommt es zu neuen Herausforderungen. Fehlende Informationen führen regelmäßig zu sequenziellen Anfragen zwischen Abteilungen, und daher zu Verzögerungen. Sobald Prozesse – gewollt oder ungewollt – parallel laufen, besteht die Gefahr von inkohärenter Kommunikation mit dem Kunden. Schlussendlich mangelt es sowohl intern als auch extern an Transparenz.
Lösung
KI-Systeme können Unternehmen in allen Bereichen unterstützen.
Fortgeschrittene Modelle wie ChatGPT verfügen über die notwendigen sprachlichen Fähigkeiten, um viele Kundenanfragen vollständig zu bearbeiten. Sie sind in der Lage, mit Kunden zu kommunizieren und gleichzeitig interne Anfragen zu stellen. Dadurch fühlen sich Kunden nicht länger von einem Chatbot abgewimmelt. Die technischen Innovationen des letzten Jahres ermöglichen es KI-Agenten, Anfragen nicht nur schneller, sondern teilweise auch präziser zu beantworten. Dies trägt zur Entlastung des Kundendienstes und interner Prozessbeteiligter bei und führt letztlich zu einer höheren Kundenzufriedenheit.
KI-Modelle können zudem menschliche Mitarbeiter bei der Kommunikation unterstützen. Wie eingangs erwähnt, mangelt es häufig schlichtweg daran, akkurate und präzise Informationen in kürzester Zeit verfügbar zu machen. Unternehmen sind bestrebt, Informationssilos aufzubrechen, um den Zugang zu relevanten Informationen zu erleichtern. Dies kann jedoch zu längeren Bearbeitungszeiten im Kundendienst führen, da die notwendigen Informationen erst zusammengetragen werden müssen. Ein wesentliches Problem besteht darin, dass Informationen in unterschiedlichsten Formen vorliegen können, beispielsweise als Text, tabellarische Daten, in Datenbanken oder sogar in Form von Strukturen wie vorheriger Dialogketten.
Moderne KI-Systeme können mit unstrukturierten und multimodalen Informationsquellen umgehen. Sogenannte Retrieval-Systeme stellen die Verbindung zwischen Kundenanfragen und diversen Informationsquellen her. Der zusätzliche Einsatz von generativen Modellen wie GPT-3 erlaubt dann, die gefundenen Informationen effizient in verständlichen Text zu synthetisieren. So lassen sich zu jeder Kundenanfrage individuelle „Wikipedia Artikel“ generieren. Alternativ kann der Kundendienstmitarbeiter seinerseits seine Fragen an einen Chatbot richten, der die nötigen Informationen unmittelbar und verständlich zur Verfügung stellt.
Es ist offensichtlich, dass ein integriertes KI-System nicht nur den Kundendienst, sondern auch weitere technische Abteilungen entlastet. Diese Art von System hat das Potenzial, die Effizienz im gesamten Unternehmen zu steigern.
Use Case 3: Analyse der Kommunikation mit KI
Herausforderung
Robuste und effiziente Prozesse entstehen nicht von selbst, sondern durch kontinuierliches Feedback und ständige Verbesserungen. Der Einsatz von KI-Systemen ändert nichts an diesem Prinzip. Eine Organisation benötigt einen Prozess der kontinuierlichen Verbesserung, um effiziente interne Kommunikation sicherzustellen, Verzögerungen im Kundenservice effektiv zu verwalten und ergebnisorientierte Verkaufsgespräche zu führen.
Im Dialog nach Außen steht das Unternehmen aber vor einem Problem: Sprache ist eine Black Box. Worte haben eine unübertroffene Informationsdichte, gerade weil ihre Nutzung in Kontext und Kultur tief verwurzelt ist. Damit entziehen sich Unternehmen aber einer klassischen statistisch-kausalen Analyse, denn Feinheiten der Kommunikation lassen sich nur schwer quantifizieren.
Bestehende Lösungen verwenden deshalb Proxyvariablen, um den Erfolg zu messen und Experimente durchzuführen. Zwar lassen sich übergeordnete KPIs wie Zufriedenheitsrankings extrahieren, diese müssen aber beim Kunden abgefragt werden und haben häufig wenig Aussagekraft. Gleichzeitig bleibt oft offen, was an der Kundenkommunikation konkret geändert werden kann, um diese KPIs zu verändern. Es scheitert schon daran, Interaktionen im Detail zu analysieren, herauszufinden was die Dimensionen und Stellschrauben sind, und was schlussendlich optimiert werden kann. Der überwiegende Teil dessen, was Kunden unmittelbar über sich preisgeben möchten, existiert in Text und Sprache und entzieht sich der Analyse. Diese Problematik ergibt sich sowohl beim Einsatz von KI-Assistenzsystemen als auch beim Einsatz von Kundendienstmitarbeitenden.
Lösung
Während moderne Sprachmodelle aufgrund ihrer generativen Fähigkeiten viel Aufmerksamkeit erhalten haben, haben auch ihre analytischen Fähigkeiten enorme Fortschritte gemacht. Die Fähigkeit von KI-Modellen, auf Kundenanfragen zu antworten, zeigt ein fortgeschrittenes Verständnis von Sprache, was für die Verbesserung integrierter KI-Systeme unerlässlich ist. Eine weitere Anwendung besteht in der Analyse von Konversationen, einschließlich der Analyse von Kunden und eigenen Mitarbeitenden oder KI-Assistenten.
Durch den Einsatz von künstlicher Intelligenz können Kunden präziser segmentiert werden, indem ihre Kommunikation detailliert analysiert wird. Hierbei werden bedeutende Themen erfasst und die Kundenmeinungen ausgewertet. Mittels semantischer Netzwerke kann das Unternehmen erkennen, welche Assoziationen verschiedene Kundengruppen mit Produkten verknüpfen. Zudem werden generative Modelle eingesetzt, um Wünsche, Ideen oder Meinungen aus einer Fülle von Kundenstimmen zu identifizieren. Stellen Sie sich vor, Sie könnten persönlich die gesamte Kundenkommunikation im Detail durchgehen, anstatt auf synthetische KPIs vertrauen zu müssen – genau das ermöglichen KI-Modelle.
Natürlich bieten KI-Systeme auch die Möglichkeit, eigene Prozesse zu analysieren und zu optimieren. Hierbei ist die KI-gestützte Dialoganalyse ein vielversprechendes Anwendungsgebiet, das derzeit intensiv in der Forschung behandelt wird. Diese Technologie ermöglicht beispielsweise die Untersuchung von Verkaufsgesprächen hinsichtlich erfolgreicher Abschlüsse. Hierbei werden Bruchpunkte der Konversation, Stimmungs- und Themenwechsel analysiert, um den optimalen Verlauf einer Konversation zu identifizieren. Diese Art von Feedback ist nicht nur für KI-Assistenten, sondern auch für Mitarbeitende äußerst wertvoll, da es sogar während einer laufenden Konversation eingespielt werden kann.
Zusammengefasst kann gesagt werden, dass sich mit dem Einsatz von KI-Systemen die Breite, die Tiefe, und die Geschwindigkeit der Feedbackprozesse verbessert. Dies ermöglicht der Organisation agil auf Trends, Wünsche und Kundenmeinungen zu reagieren und interne Prozesse noch weitreichender zu optimieren.
Lesen Sie auch unser Whitepaper, in dem wir 4 Blueprints für KI-Modelle in der Kommunikation mit Kunden und Lieferanten vorstellen
Stolpersteine, die es zu beachten gilt
Die Anwendung von KI-Systemen hat also das Potential, die Kommunikation mit Kunden grundlegend zu revolutionieren. Ein ähnliches Potential lässt sich auch bei anderen Bereichen zeigen, zum Beispiel im Einkauf. Im Begleitmaterial finden Sie weitere Use-Cases, die zum Beispiel in den Bereichen Knowledge-Management und Procurement anwendbar sind.
Allerdings zeigt sich, dass selbst fortgeschrittenste KI-Modelle noch nicht in Isolation einsatzfähig sind. Um von Spielerei zum effektiven Einsatz zu kommen, braucht es Erfahrung, Augenmaß und ein abgestimmtes System aus KI-Modellen.
Die Integration von Sprachmodellen ist noch wichtiger als die Modelle selbst. Da Sprachmodelle als Schnittstelle zwischen Computern und Menschen agieren, müssen sie besonderen Anforderungen genügen. Insbesondere müssen Systeme, die in Arbeitsprozesse eingreifen, von den gewachsenen Strukturen des Unternehmens lernen. Als Schnittstellentechnologie müssen Aspekte wie Fairness, Vorurteilsfreiheit und Faktenkontrolle in das System integriert werden. Darüber hinaus benötigt das gesamte System eine direkte Eingriffsmöglichkeit für Mitarbeiter, um Fehler aufzuzeigen und bei Bedarf die KI-Modelle neu auszurichten. Dieses „Active-Learning“ ist noch kein Standard, aber es kann den Unterschied zwischen theoretischer und praktischer Effizienz ausmachen.
Der Einsatz von mehreren Modellen die sowohl vor Ort, als auch direkt bei Fremdanbietern laufen, stellt neue Ansprüche an die Infrastruktur. Ebenfalls gilt zu beachten, dass der essenzielle Informationstransfer nicht ohne gründliche Behandlung von personenbezogenen Daten möglich ist. Dies gilt insbesondere, wenn kritische Firmeninformationen eingebunden werden müssen. Wie eingangs beschrieben, gibt es inzwischen viele Sprachmodelle mit unterschiedlichen Fähigkeiten. Daher muss die Architektur der Lösung und die Modelle entsprechend der Anforderungen ausgewählt und kombiniert werden. Schließlich stellt sich die Frage, ob man auf Anbieter von Lösungen zurückgreift, oder eigene (Teil-)Modelle entwickelt. Derzeit gibt es (entgegen von einigen Marketingaussagen) keine Standardlösung, die allen Anforderungen gerecht wird. Je nach Anwendungsfall gibt es Anbieter von kosteneffizienten Teillösungen. Eine Entscheidung erfordert Kenntnis dieser Anbieter, ihrer Lösung und deren Limitationen.
Fazit
Zusammenfassend kann festgehalten werden, dass der Einsatz von KI-Systemen in der Kundenkommunikation eine Verbesserung und Automatisierung der Prozesse bewirken kann. Eine zentrale Zielsetzung für Unternehmen sollte die Optimierung und Rationalisierung ihrer Kommunikationsprozesse sein. KI-Systeme können dabei unterstützen, indem sie die Planung, Initiation und Weiterleitung von Kundeninteraktionen effektiver gestalten und bei komplexeren Anfragen entweder einen KI-Agenten wie ChatGPT oder einen Kundendienstmitarbeiter aktivieren. Durch die gezielte Kombination von verschiedenen Modellen kann eine sinnvolle Problemlösung in allen Phasen der Interaktion erzielt werden, die den angestrebten wirtschaftlichen Nutzen generiert.
Lesen Sie auch unser Whitepaper, in dem wir 4 Blueprints für KI-Modelle in der Kommunikation mit Kunden und Lieferanten vorstellen
Schaffe Mehrwert für Deine Data Science Projekte
Data Science und datengetriebene Entscheidungen sind für viele Unternehmen zu einem zentralen Bestandteil ihres Tagesgeschäfts geworden, der in den kommenden Jahren nur noch an Wichtigkeit zunehmen wird. Bis Ende 2022 werden viele Unternehmen eine Cloud-Strategie eingeführt haben:
„70 % der Unternehmen werden bis 2022 über eine formale Cloud-Strategie verfügen, und diejenigen, die diese nicht einführen, werden es schwer haben.“
– Gartner-Forschung
Dadurch, dass sich Cloud-Technologien zu einem Grundbaustein in allen Arten von Unternehmen entwickeln, werden sie auch immer leichter verfügbar. Dies senkt die Einstiegshürde für die Entwicklung Cloud-nativer Anwendungen.
In diesem Blogeintrag werden wir uns damit beschäftigen, wie und warum wir Data Science Projekte am besten in der Cloud durchführen. Ich gebe einen Überblick über die erforderlichen Schritte, um ein Data Science Projekt in die Cloud zu verlagern, und gebe einige Best Practices aus meiner eigenen Erfahrung weiter, um häufige Fallstricke zu vermeiden.
Ich erörtere keine spezifischen Lösungsmuster für einzelne Cloud-Anbieter, stelle keine Vergleiche auf und gehe auch nicht im Detail auf Best Practices für Machine Learning und DevOps ein.
Data Science Projekte profitieren von der Nutzung öffentlicher Cloud-Dienste
Ein gängiger Ansatz für Data Science Projekte besteht darin, zunächst lokal Daten zu bearbeiten und Modelle auf Snapshot-basierten Daten zu trainieren und auszuwerten. Dies hilft in einem frühen Stadium Schritt zu halten, solange noch unklar ist, ob Machine Learning das identifizierte Problem überhaupt lösen kann. Nach der Erstellung einer ersten Modellversion, die den Anforderungen des Unternehmens entspricht, soll das Modell eingesetzt werden und somit Mehrwert schaffen.
Zum Einsatz eines Modells in Produktion gibt es normalerweise zwei Möglichkeiten: 1) Einsatz des Modells in einer on-premises Infrastruktur oder 2) Einsatz des Modells in einer Cloud-Umgebung bei einem Cloud-Anbieter Deiner Wahl. Die lokale Bereitstellung des Modells on-premises mag zunächst verlockend klingen, und es gibt Fälle, in denen dies eine umsetzbare Option ist. Allerdings können die Kosten für den Aufbau und die Wartung einer Data Science-spezifischen Infrastruktur recht hoch sein. Dies resultiert aus den unterschiedlichen Anforderungen, die von spezifischer Hardware über die Bewältigung von Spitzenbelastung während Trainingsphasen bis hin zu zusätzlichen, voneinander abhängigen Softwarekomponenten reichen.
Verschiedene Cloud-Konfigurationen bieten unterschiedliche Freiheitsgrade
Bei der Nutzung der Cloud wird zwischen «Infrastructure as a Service» (IaaS), «Container as a Service» (CaaS), «Platform as a Service» (PaaS) und «Software as a Service» (SaaS) unterschieden, wobei man in der Regel Flexibilität gegen Wartungsfreundlichkeit tauscht. Die folgende Abbildung veranschaulicht die Unterschiedlichen Abdeckungen auf den einzelnen Serviceebenen.
- «On-Premises» musst Du dich um alles selbst kümmern: Bestellung und Einrichtung der erforderlichen Hardware, Einrichtung Deiner Datenpipeline und Entwicklung, Ausführung und Überwachung Deiner Anwendungen.
- Bei «Infrastructure as a Service» kümmert sich der Anbieter um die Hardwarekomponenten und liefert eine virtuelle Maschine mit einer festen Version eines Betriebssystems (OS).
- Bei «Containers as a Service» bietet der Anbieter eine Container-Plattform und eine Orchestrierungslösung an. Du kannst Container-Images aus einer öffentlichen Registry verwenden, diese anpassen oder eigene Container erstellen.
- Bei «Platform as a Service»-Diensten musst Du in der Regel nur noch Deine Daten einbringen, um mit der Entwicklung Deiner Anwendung loszulegen. Falls es sich um eine serverlose Lösung handelt, sind auch keine Annahmen zur Servergröße nötig.
- «Software as a Service»-Lösungen als höchstes Service-Level sind auf einen bestimmten Zweck zugeschnitten und beinhalten einen sehr geringen Aufwand für Einrichtung und Wartung. Dafür bieten sie aber nur eine stark begrenzte Flexibilität, denn neue Funktionen müssen in der Regel beim Anbieter angefordert werden.
Öffentliche Cloud-Dienste sind bereits auf die Bedürfnisse von Data Science Projekten zugeschnitten
Zu den Vorteilen der Public-Cloud gehören Skalierbarkeit, Entkopplung von Ressourcen und Pay-as-you-go-Modelle. Diese Vorteile sind bereits ein Plus für Data Science Anwendungen, z. B. für die Skalierung von Ressourcen für den Trainingsprozess. Darüber hinaus haben alle drei großen Cloud-Anbieter einen Teil ihres Servicekatalogs auf Data Science Anwendungen zugeschnitten, jeder von ihnen mit seinen eigenen Stärken und Schwächen.
Dazu gehören nicht nur spezielle Hardware wie GPUs, sondern auch integrierte Lösungen für ML-Operationen wie automatisierte Bereitstellungen, Modellregistrierungen und die Überwachung von Modellleistung und Datendrift. Viele neue Funktionen werden ständig entwickelt und zur Verfügung gestellt. Um mit diesen Innovationen und Funktionen on-premises Schritt zu halten, musst Du eine beträchtliche Anzahl von Ressourcen aufwenden, ohne dass sich dies direkt auf Dein Geschäft auswirkt.
Wenn Du an einer ausführlichen Diskussion über die Bedeutung der Cloud für den Erfolg von KI-Projekten interessiert bist, dann schau Dir doch dieses White Paper auf dem statworx Content Hub an.
Die Durchführung Deines Projekts in der Cloud erfolgt in nur 5 einfachen Schritten
Wenn Du mit der Nutzung der Cloud für Data Science Projekte beginnen möchtest, musst Du im Vorfeld einige wichtige Entscheidungen treffen und entsprechende Schritte unternehmen. Wir werden uns jeden dieser Schritte genauer ansehen.
1. Auswahl der Cloud-Serviceebene
Bei der Wahl der Serviceebene sind die gängigsten Muster für Data-Science-Anwendungen CaaS oder PaaS. Der Grund dafür ist, dass «Infrastructure as a Service» hohe Kosten verursachen kann, die aus der Wartung virtueller Maschinen oder dem Aufbau von Skalierbarkeit über VMs hinweg resultieren. SaaS-Dienste hingegen sind bereits auf ein bestimmtes Geschäftsproblem zugeschnitten und sind einfach in Betrieb zu nehmen, anstatt ein eigenes Modell und eine eigene Anwendung zu entwickeln.
CaaS bietet den Hauptvorteil, dass Container auf jeder Containerplattform eines beliebigen Anbieters bereitgestellt werden können. Und wenn die Anwendung nicht nur aus dem Machine Learning Modell besteht, sondern zusätzliche Mikrodienste oder Front-End-Komponenten benötigt, können diese alle mit CaaS gehostet werden. Der Nachteil ist, dass, ähnlich wie bei einer On-Premises-Einführung, Container-Images für MLops-Tools wie Model Registry, Pipelines und Modell-Performance-Monitoring nicht standardmäßig verfügbar sind und mit der Anwendung erstellt und integriert werden müssen. Je größer die Anzahl der verwendeten Tools und Bibliotheken ist, desto höher ist die Wahrscheinlichkeit, dass künftige Versionen irgendwann Inkompatibilitäten aufweisen oder sogar überhaupt nicht mehr zusammenpassen.
PaaS-Dienste wie Azure Machine Learning, Google Vertex AI oder Amazon SageMaker hingegen haben all diese Funktionalitäten bereits integriert. Der Nachteil dieser Dienste ist, dass sie alle mit komplexen Kostenstrukturen einhergehen und spezifisch für den jeweiligen Cloud-Anbieter sind. Je nach Projektanforderungen können sich die PaaS-Dienste in einigen speziellen Fällen als zu restriktiv erweisen.
Beim Vergleich von CaaS und PaaS geht es meist um den Kompromiss zwischen Flexibilität und einem höheren Grad an Anbieterbindung. Eine stärkere Bindung an den Anbieter ist mit einem Aufpreis verbunden, der für die enthaltenen Funktionen, die größere Kompatibilität und die höhere Entwicklungsgeschwindigkeit zu entrichten ist. Eine höhere Flexibilität wiederum geht mit einem höheren Integrations- und Wartungsaufwand einher.
2. Daten in der Cloud verfügbar machen
In der Regel besteht der erste Schritt zur Bereitstellung Deiner Daten darin, einen Schnappschuss der Daten in einen Cloud-Objektspeicher hochzuladen. Diese sind gut mit anderen Diensten integriert und können später mit geringem Aufwand durch eine geeignetere Datenspeicherlösung ersetzt werden. Sobald die Ergebnisse des Machine Learning Modells aus geschäftlicher Sicht geeignet sind, sollten Data Engineers einen Prozess einrichten, um Deine Daten automatisch auf dem neuesten Stand zu halten.
3. Aufbau einer Pipeline für die Vorverarbeitung
Ein entscheidender Schritt bei jedem Data Science Projekt ist der Aufbau einer robusten Pipeline für die Datenvorverarbeitung. Dadurch wird sichergestellt, dass Deine Daten sauber und bereit für die Modellierung sind, was Dir auf lange Sicht Zeit und Mühe erspart. Ein bewährtes Verfahren ist die Einrichtung einer CICD-Pipeline (Continuous Integration and Continuous Delivery), um die Bereitstellung und das Testen Deiner Vorverarbeitung zu automatisieren und sie in Deinen DevOps-Zyklus einzubinden. Die Cloud hilft Dir, Deine Pipelines automatisch zu skalieren, um jede für das Training Deines Modells benötigte Datenmenge zu bewältigen.
4. Training und Evaluierung des Modells
In dieser Phase wird die Preprocessing-Pipeline durch Hinzufügen von Modellierungskomponenten erweitert. Dazu gehört auch die Abstimmung von Hyperparametern, die wiederum von Cloud-Diensten durch die Skalierung von Ressourcen und die Speicherung der Ergebnisse der einzelnen Trainingsexperimente zum leichteren Vergleich unterstützt wird. Alle Cloud-Anbieter bieten einen automatisierten Dienst für Machine Learning an. Dieser kann entweder genutzt werden, um schnell die erste Version eines Modells zu erstellen und die Leistung mit den Daten über mehrere Modelltypen hinweg zu vergleichen. Auf diese Weise kannst Du schnell beurteilen, ob die Daten und die Vorverarbeitung ausreichen, um das Geschäftsproblem zu lösen. Außerdem kann das Ergebnis als Benchmark für Data Scientists verwendet werden. Das beste Modell sollte in einer Modellregistrierung gespeichert werden, damit es einsatzbereit und transparent ist.
Falls ein Modell bereits lokal oder on-premises trainiert wurde, ist es möglich, das Training zu überspringen und das Modell einfach in die Modellregistrierung zu laden.
5. Bereitstellung des Modells für die Business Unit
Der letzte und wahrscheinlich wichtigste Schritt ist die Bereitstellung des Modells für Deine Business Unit, damit diese einen Nutzen daraus ziehen kann. Alle Cloud-Anbieter bieten Lösungen an, um das Modell mit geringem Aufwand skalierbar bereitzustellen. Schließlich werden alle Teile, die in den früheren Schritten von der automatischen Bereitstellung der neuesten Daten über die Anwendung der Vorverarbeitung und die Einspeisung der Daten in das bereitgestellte Modell erstellt wurden, zusammengeführt.
Jetzt haben wir die einzelnen Schritte für das Onboarding Deines Data Science Projekts durchlaufen. Mit diesen 5 Schritten bist Du auf dem besten Weg, Deinen Data-Science-Workflow in die Cloud zu verlagern. Um einige der üblichen Fallstricke zu vermeiden, möchte ich hier einige Erkenntnisse aus meinen persönlichen Erfahrungen weitergeben, die sich positiv auf den Erfolg Deines Projekts auswirken können.
Erleichtere Dir den Umstieg auf die Cloud mit diesen nützlichen Tipps
Beginne frühzeitig mit der Nutzung der Cloud.
Wenn Du früh damit beginnst, kann sich Dein Team mit den Funktionen der Plattform vertraut machen. Auf diese Weise kannst Du die Möglichkeiten der Plattform optimal nutzen und potenzielle Probleme und umfangreiche Umstrukturierungen vermeiden.
Stelle sicher, dass Deine Daten zugänglich sind.
Dies mag selbstverständlich erscheinen, aber es ist wichtig, dass Deine Daten beim Wechsel in die Cloud leicht zugänglich sind. Dies gilt insbesondere dann, wenn Du Deine Daten lokal generierst und anschliessend in die Cloud übertragen musst.
Erwäge den Einsatz von serverlosem Computing.
Serverless Computing ist eine großartige Option für Data Science Projekte, da es Dir ermöglicht, Deine Ressourcen nach Bedarf zu skalieren, ohne dass Du Server bereitstellen oder verwalten musst.
Vergiss nicht die Sicherheit.
Zwar bieten alle Cloud-Anbieter einige der modernsten IT-Sicherheitseinrichtungen an, doch einige davon sind bei der Konfiguration leicht zu übersehen und können Dein Projekt einem unnötigen Risiko aussetzen.
Überwache Deine Cloud-Kosten.
Bei der Optimierung von on-premises Lösungen geht es oft um die Spitzenauslastung von Ressourcen, da Hardware oder Lizenzen begrenzt sind. Mit Skalierbarkeit und Pay-as-you-go verschiebt sich dieses Paradigma stärker in Richtung Kostenoptimierung. Die Kostenoptimierung ist in der Regel nicht die erste Maßnahme, die man zu Beginn eines Projekts ergreift, aber wenn man die Kosten im Auge behält, können unangenehme Überraschungen vermeiden und die Cloud-Anwendung zu einem späteren Zeitpunkt noch kosteneffizienter gestalten werden.
Lass Deine Data Science Projekte mit der Cloud abheben
Wenn Du Dein nächstes Data Science Projekt in Angriff nimmst, ist die frühzeitige Nutzung der Cloud eine gute Option. Die Cloud ist skalierbar, flexibel und bietet eine Vielzahl von Diensten, mit denen Du das Beste aus Deinem Projekt herausholen kannst. Cloud-basierte Architekturen sind eine moderne Art der Anwendungsentwicklung, die in Zukunft noch mehr an Bedeutung gewinnen wird.
Wenn Du die vorgestellten Schritte befolgst, wirst Du auf diesem Weg unterstützt und kannst mit neusten Trends und Entwicklungen Schritt halten. Außerdem kannst Du mit meinen Tipps viele der üblichen Fallstricke vermeiden, die oft auf diesem Weg auftreten. Wenn Du also nach einer Möglichkeit suchst, das Beste aus Deinem Data Science Projekt herauszuholen, ist die Cloud definitiv eine Überlegung wert.
Warum wir KI-Prinzipien brauchen
Künstliche Intelligenz verändert unsere Welt grundlegend. Algorithmen beeinflussen zunehmend, wie wir uns verhalten, denken und fühlen. Unternehmen rund um den Globus werden KI-Technologien zunehmend nutzen und ihre derzeitigen Prozesse und Geschäftsmodelle neu erfinden. Unsere sozialen Strukturen, die Art und Weise, wie wir arbeiten und wie wir miteinander interagieren, werden sich mit den Fortschritten der Digitalisierung, insbesondere der KI, verändern.
Neben ihrem sozialen und wirtschaftlichen Einfluss spielt KI auch eine wichtige Rolle bei einer der größten Herausforderungen unserer Zeit: dem Klimawandel. Einerseits kann KI Instrumente bereitstellen, um einen Teil dieser dringenden Herausforderung zu bewältigen. Andererseits wird die Entwicklung und Implementierung von KI-Anwendungen viel Energie verbrauchen und große Mengen an Treibhausgasen ausstoßen.
Risiken der KI
Mit dem Fortschritt einer Technologie, die einen so großen Einfluss auf alle Bereiche unseres Lebens hat, gehen große Chancen, aber auch große Risiken einher. Um Euch einen Eindruck von den Risiken zu vermitteln, haben wir sechs Beispiele herausgegriffen:
- KI kann zur Überwachung von Menschen eingesetzt werden, zum Beispiel durch Gesichtserkennungssysteme. Einige Länder setzen diese Technologie bereits seit einigen Jahren intensiv ein.
- KI wird in sehr sensiblen Bereichen eingesetzt. In diesen können schon kleine Fehlfunktionen dramatische Auswirkungen haben. Beispiele dafür sind autonomes Fahren, robotergestützte Chirurgie, Kreditwürdigkeitsprüfung, Auswahl von Bewerber:innen oder Strafverfolgung.
- Der Skandal um Facebook und Cambridge Analytica hat gezeigt, dass Daten und KI-Technologien zur Erstellung psychografischer Profile genutzt werden können. Diese Profile ermöglichen die gezielte Ansprache von Personen mit maßgeschneiderten Inhalten. Beispielsweise zur Beeinflussung von politischen Wahlen. Dieses Beispiel zeigt die enorme Macht der KI-Technologien und die Möglichkeit für Missbrauch und Manipulation.
- Mit den jüngsten Fortschritten in der Computer Vision Technologie können Deep Learning Algorithmen nun zur Erstellung von Deepfakes verwendet werden. Deepfakes sind realistische Videos oder Bilder von Menschen, in denen diese etwas tun oder sagen, was sie nie in der Realität getan oder gesagt haben. Die Möglichkeiten für Missbrauch dieser Technologie sind vielfältig.
- KI-Lösungen werden häufig entwickelt, um manuelle Prozesse zu verbessern oder zu optimieren. Es wird Anwendungsfälle geben, bei denen menschliche Arbeit ersetzt wird. Dabei entstehen unterschiedlichste Herausforderungen, die nicht ignoriert, sondern frühzeitig angegangen werden müssen.
- In der Vergangenheit haben KI-Modelle diskriminierende Muster der Daten, auf denen sie trainiert wurden, reproduziert. So hat Amazon beispielsweise ein KI-System in seinem Rekrutierungsprozess eingesetzt, das Frauen eindeutig benachteiligte.
Diese Beispiele machen deutlich, dass jedes Unternehmen und jede Person, die KI-Systeme entwickelt, sehr sorgfältig darüber nachdenken sollte, welche Auswirkungen das System auf die Gesellschaft, bestimmte Gruppen oder sogar Einzelpersonen haben wird oder haben könnte.
Daher besteht die große Herausforderung für uns darin, sicherzustellen, dass die von uns entwickelten KI-Technologien den Menschen helfen und sie befähigen, während wir gleichzeitig potenzielle Risiken minimieren.
Warum gibt es im Jahr 2022 keine offizielle Regelung?
Vielleicht fragt Ihr euch, warum es keine Gesetze gibt, die sich mit diesem Thema befassen. Das Problem bei neuen Technologien, insbesondere bei künstlicher Intelligenz, ist, dass sie sich schnell weiterentwickeln, manchmal sogar zu schnell.
Die jüngsten Veröffentlichungen neuer Sprachmodelle wie GPT-3 oder Computer Vision Modelle, z. B. DALLE-2, haben selbst die Erwartungen vieler KI-Expert:innen übertroffen. Die Fähigkeiten und Anwendungen der KI-Technologien werden sich schneller weiterentwickeln, als die Regulierung es kann. Und wir sprechen hier nicht von Monaten, sondern von Jahren.
Dabei ist zu erwähnen, dass die EU einen ersten Versuch in diese Richtung unternommen hat, indem sie eine Regulierung von künstlicher Intelligenz vorgeschlagen hat. In diesem Vorschlag wird jedoch darauf hingewiesen, dass die Verordnung frühestens in der zweiten Hälfte des Jahres 2024 für die anwendenden Unternehmen gelten könnte. Das sind Jahre, nachdem die oben beschriebenen Beispiele Realität geworden sind.
Unser Ansatz: statworx AI Principles
Die logische Konsequenz daraus ist, dass wir uns als Unternehmen selbst dieser Herausforderung stellen müssen. Und genau deshalb arbeiten wir derzeit an den statworx AI Principles, einer Reihe von Prinzipien, die uns bei der Entwicklung von KI-Lösungen leiten und Orientierung geben sollen.
Was wir bisher getan haben und wie wir dazu gekommen sind
In unserer Arbeitsgruppe „AI & Society“ haben wir begonnen, uns mit diesem Thema zu beschäftigen. Zunächst haben wir den Markt gescannt und viele interessante Paper gefunden. Allerdings sind wir zu dem Schluss gekommen, dass sich keins davon 1:1 auf unser Geschäftsmodell übertragen lässt. Oft waren diese Prinzipien oder Richtlinien sehr schwammig oder zu detailliert und zusätzlich ungeeignet für ein Beratungsunternehmen, das im B2B-Bereich als Dienstleister tätig ist. Also beschlossen wir, dass wir selbst eine Lösung entwickeln mussten.
In den ersten Diskussionen darüber wurden vier große Herausforderungen deutlich:
- Einerseits müssen die AI Principles klar und für das breite Publikum verständlich formuliert sein, damit auch Nicht-Expert:innen sie verstehen. Andererseits müssen sie konkret sein, um sie in unseren Entwicklungsprozess integrieren zu können.
- Als Dienstleister haben wir nur begrenzte Kontrolle und Entscheidungsgewalt über einige Aspekte einer KI-Lösung. Daher müssen wir verstehen, was wir entscheiden können und was außerhalb unserer Kontrolle liegt.
- Unsere AI Principles werden nur dann einen nachhaltigen Mehrwert schaffen, wenn wir auch nach ihnen handeln können. Deshalb müssen wir sie in unseren Kundenprojekten anwenden und bewerben. Wir sind uns darüber im Klaren, dass Budgetzwänge, finanzielle Ziele und andere Faktoren dem entgegenstehen könnten, da es zusätzlichen Zeit- und Geldaufwand erfordert.
- Außerdem ist nicht immer klar, was falsch und richtig ist. Unsere Diskussionen haben gezeigt, dass es viele unterschiedliche Auffassungen darüber gibt, was richtig und notwendig ist. Das bedeutet, dass wir eine gemeinsame Basis finden müssen, auf die wir uns als Unternehmen einigen können.
Unsere zwei wichtigsten Erkenntnisse
Eine wichtige Erkenntnis aus diesen Überlegungen war, dass wir zwei Dinge brauchen.
In einem ersten Schritt brauchen wir übergeordnete Grundsätze, die verständlich und klar sind und bei denen alle mit an Bord sind. Diese Grundsätze dienen als Leitidee und geben Orientierung bei der Entscheidungsfindung. In einem zweiten Schritt wird daraus ein Framework abgeleitet, welches diese Grundsätze in allen Phasen unserer Projekte in konkrete Maßnahmen übersetzt.
Die zweite wichtige Erkenntnis ist, dass es durchaus schwierig ist, diesen Prozess zu durchlaufen und sich diese Fragen zu stellen. Aber gleichzeitig auch, dass dies für jedes Unternehmen, das KI-Technologie entwickelt oder einsetzt, unvermeidlich ist.
Was kommt als nächstes?
Bis jetzt sind wir fast am Ende des ersten Schritts angelangt. Wir werden die statworx AI Principles bald über unsere Kanäle kommunizieren. Wenn Ihr euch ebenfalls in diesem Prozess befindet, würden wir uns freuen, mit Euch in Kontakt zu treten, um zu verstehen, wie ihr vorgegangen seid und was ihr dabei gelernt habt.
Quellen
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://www.bundesregierung.de/breg-de/themen/umgang-mit-desinformation/deep-fakes-1876736
Bei all dem Hype um KI in den letzten Jahren darf man nicht außer Acht lassen, dass ein Großteil der Unternehmen bei der erfolgreichen Implementierung von KI-basierten Anwendungen noch hinterherhinken. Dies ist gerade in vielen Industrien, wie z.B. in produzierenden Gewerben, recht offensichtlich (McKinsey).
Eine von Accenture 2019 durchgeführte Studie zum Thema Implementierung von KI in Unternehmungen zeigt, dass über 80% aller Proof of Concepts (PoCs) es nicht in Produktion schaffen. Außerdem gaben nur 5% aller befragten Unternehmen an, eine unternehmensweite KI-Strategie implementiert zu haben.
Diese Erkenntnisse regen zum Nachdenken an: Was genau läuft schief und warum schafft künstliche Intelligenz anscheinend noch nicht die ganzheitliche Transition von erfolgreichen, akademischen Studien zu der realen Welt?
1. Was ist data-centric AI?
„Data-centric AI is the discipline of systematically engineering the data used to build an AI system.“
Zitat von Andrew Ng, data-centric AI Pionier
Der data-centric Ansatz fokussiert sich auf eine stärkere Daten-integrierenden KI (data-first) und weniger auf eine Konzentration auf Modelle (model-first), um die Schwierigkeiten von KI mit der „Realität“ zu bewältigen. Denn, die Trainingsdaten, die meist bei Unternehmen als Ausgangspunkt eines KI-Projekts stehen, haben relativ wenig gemeinsam mit den akribisch kurierten und weit verbreiteten Benchmark Datensets wie MNIST oder ImageNet.
Das Ziel dieses Artikels ist, data-centric im KI-Workflow und Projektkontext einzuordnen, Theorien sowie relevante Frameworks vorzustellen und aufzuzeigen, wie wir bei statworx eine data-first KI-Implementierung angehen.
2. Welche Gedankengänge stecken hinter data-centric?
Vereinfacht dargestellt bestehen KI-Systeme aus zwei entscheidenden Komponenten: Daten und Modell(-Code). Data-centric fokussiert sich mehr auf die Daten, model-centric auf das Modell – duh!
Bei einer stark model-centric lastigen KI werden Daten als ein extrinsischer, statischer Parameter behandelt. Der iterative Prozess eines Data Science Projekts startet praktisch erst nach dem Erhalt der Daten bei den Modell-spezifischen Schritten, wie Feature Engineering, aber vor allem exzessives Trainieren und Fine tunen verschiedener Modellarchitekturen. Dies macht meist das Gros der Zeit aus, das Data Scientists an einem Projekt aufwenden. Kleinere Daten-Aufbereitungsschritte werden meist nur einmalig, ad-hoc am Anfang eines Projekts angegangen.
Im Gegensatz dazu versucht data-centric (automatisierte) Datenprozesse als zentralen Teil jedes ML Projekts zu etablieren. Hierunter fallen alle Schritte die ausgehend von den Rohdaten nötig sind, um ein fertiges Trainingsset zu generieren. Durch diese Internalisierung soll eine methodische Überwachbarkeit für verbesserte Qualität sorgen.
Man kann dabei data-centric Überlegungen in drei übergeordnete Kategorien zusammenfassen. Diese beschreiben lose, welche Aufgabenbereiche bei einem data-centric Ansatz bedacht werden sollten. Im Folgenden wurde versucht, diese bekannte Buzzwords, die im Kontext von data-centric immer wieder auftauchen, thematisch einer Kategorie zuzuordnen.
2.1. Integration von SMEs in den Development Prozess als wichtiges Bindeglied zwischen Data- und Model-Knowledge.
Die Einbindung von Domain Knowledge ist ein integraler Bestandteil von data-centric. Dies hilft Projektteams besser zusammenwachsen zu lassen und so das Wissen der Expert:innen, auch Subject Matter Experts (SMEs) genannt, bestmöglich im KI-Prozess zu integrieren.
- Data Profiling:
Data Scientists sollten nicht als Alleinkämpfer:innen die Daten analysieren und nur ihre Befunde mit den SMEs teilen. Data Scientists können ihre statistischen und programmatischen Fähigkeiten gezielt einsetzen, um SMEs zu befähigen, die Daten eigenständig zu untersuchen und auszuwerten. - Human-in-the-loop Daten & Model Monitoring:
Ähnlich wie beim Profiling soll hierbei durch das Bereitstellen eines Einstiegpunktes gewährleistet werden, das SMEs Zugang zu den relevanten Komponenten des KI-Systems erhalten. Von diesem zentralen Checkpoint können nicht nur Daten sondern auch Modell-relevante Metriken überwacht werden oder Beispiele visualisiert und gecheckt werden. Gleichzeit gewährt ein umfängliches Monitoring die Möglichkeit, nicht nur Fehler zu erkennen, sondern auch die Ursachen zu untersuchen und das möglichst ohne notwendige Programmierkenntnisse.
2.2. Datenqualitätsmanagement als agiler, automatisierter und iterativer Prozess über (Trainings-)Daten
Die Datenaufbereitung wird als Prozess verstanden, dessen kontinuierliche Verbesserung im Vordergrund eines Data Science Projekts stehen sollte. Das Modell, anders als bisher, sollte hingegen erstmal als (relativ) fixer Parameter behandelt werden.
- Data Catalogue, Lineage & Validation:
Die Dokumentation der Daten sollte ebenfalls keine extrinsische Aufgabe sein, die oft nur gegen Ende eines Projekts ad-hoc entsteht und bei jeder Änderung, z.B. eines Modellfeatures, wieder obsolet sein könnte. Änderungen sollen dynamisch reflektiert werden und so die Dokumentation automatisieren. Data Catalogue Frameworks bieten hier die Möglichkeit, Datensätze mit Meta-Informationen anzureichern.
Data Lineage soll im Weiteren dabei unterstützen, bei diversen Inputdaten, verschiedenen Transformations- und Konsolidierungsschritten zwischen roh- und finalem Datenlayer den Überblick zu behalten. Je komplexer ein Datenmodell, desto eher kann ein Lineage Graph Auskunft über das Entstehen der finalen Spalten geben (Grafik unten), beispielsweise ob und wie Filterungen oder bestimmte join Logiken benutzt wurden. Die Validierung (neuer) Daten hilft schließlich eine konsistente Datengrundlage zu gewährleisten. Hier helfen die Kenntnisse aus dem Data Profiling um Validierungsregeln auszuarbeiten und im Prozess zu integrieren.
- Data & Label Cleaning:
Die Notwendigkeit der Datenaufbereitung ist selbsterklärend und als Best Practice ein fester Bestandteil in jedem KI-Projekt. Eine Label-Aufbereitung ist zwar nur bei Klassifikations-Algorithmen relevant, wird aber hier selten als wichtiger pre-processing Schritt mitbedacht. Aufbereitungen können aber mit Hilfe von Machine Learning automatisiert werden. Falsche Labels können es nämlich für Modelle erschweren, exakte patterns zu erlernen.
Auch sollte man sich bewusst machen, dass solange sich die Trainingsdaten ändern, die Datenaufbereitung kein vollkommen abgeschlossener Prozess sein kann. Neue Daten bedeuten oft auch neue Cleaning-Schritte. - Data Drifts in Produktion:
Eine weit verbreitete Schwachstelle von KI-Applikationen tritt meist dann auf, wenn sich Daten nicht so präsentieren, wie es beim Trainieren der Fall war, beispielweise im Zeitverlauf ändern (Data Drifts). Um die Güte von ML Modellen auch langfristig zu gewährleisten, müssen Daten in Produktion kontinuierlich überwacht werden. Hierdurch können Data Drifts frühzeitig ausfindig gemacht werden, um dann Modelle neu auszurichten, wenn z.B. bestimmte Inputvariablen von ihrer ursprünglichen Verteilung zu stark abweichen. - Data Versioning:
GitHub ist seit Jahren der go to Standard für Code Versionierungen, um mehr Übersicht und Kontrolle zwischen Codeständen zu haben. Aber auch Daten können versioniert werden und so eine ganzheitliche Prozesskontrolle bieten. Ebenfalls können so Code- mit Datenständen verknüpft werden. Dies sorgt nicht nur für bessere Überwachbarkeit, sondern hilft auch dabei, automatisierte Prozesse anzustoßen.
2.3. Generieren von Trainingsdatensätzen als programmatischer Task.
Gerade das Erzeugen von (gelabelten) Trainingsdaten ist einer der größten Roadblocker für viele KI-Projekte. Gerade bei komplexen Problemen, die große Datensätze benötigen, ist der initiale, manuelle Aufwand enorm.
- Data Augmentation:
Bei vielen datenintensiven Deep Learning Modellen wird diese Technik schon seit längerem eingesetzt, um mit bestehenden Daten, artifizielle Daten zu erzeugen. Bei Bilddaten ist dies recht anschaulich erklärbar. Hier werden beispielsweise durch Drehen eines Bildes verschiedene Perspektiven desselben Objektes erzeugt. Aber auch bei NLP und bei „tabularen“ Daten (Excel und Co.) gibt es Möglichkeiten neue Datenpunkte zu erzeugen.
- Automated Data Labeling:
Normalerweise ist Labeling ein sehr arbeitsintensiver Schritt, in dem Menschen Datenpunkte einer vordefinierten Kategorie zuordnen. Einerseits ist dadurch der initiale Aufwand (Kosten) sehr hoch, andererseits fehleranfällig und schwierig zu überwachen. Hier kann ML durch Konzepte wie semi- oder weak supervison Automatisierungshilfe leisten, was den manuellen Aufwand erheblich reduziert. - Data Selection:
Arbeiten mit großen Datensätzen sind im lokalen Trainingskontext schwierig zu handhaben. Gerade dann, wenn diese nicht mehr in den Arbeitsspeicher des Laptops passen. Und selbst wenn, dann dauern Trainingsläufe meist sehr lange. Data Selection versucht die Größe durch ein aktives Subsampling (ob gelabelt oder ungelabelt) zu reduzieren. Aktiv werden hier die „besten“ Beispiele mit der höchsten Vielfalt und Repräsentativität ausgewählt, um die bestmögliche Charakterisierung des Inputs zu gewährleisten – und das automatisiert.
Selbstverständlich ist es nicht in jedem KI-Projekt sinnvoll, alle aufgeführten Frameworks zu bedenken. Es ist Aufgabe eines jedes Development Teams, die nötigen Tools und Schritte im data-centric Kontext zu analysieren und auf Relevanz und Übertragbarkeit zu prüfen. Hier spielen neben datenseitigen Überlegungen auch Business Faktoren eine Hauptrolle, da neue Tools meist auch mehr Projektkomplexität bedeuten.
3. Integration von data-centric bei statworx
Data-centric Überlegungen spielen bei unseren Projekten gerade in der Übergangsphase zwischen PoC und Produktivstellen des Modells vermehrt eine führende Rolle. Denn auch in einigen unserer Projekte ist es schon vorgekommen, dass man nach erfolgreichem PoC mit verschiedenen datenspezifischen Problemen zu kämpfen hatte; meist hervorgerufen durch unzureichende Dokumentation und Validierung der Inputdaten oder ungenügende Integration von SMEs im Datenprozess und Profiling.
Generell versuchen wir daher unseren Kunden die Wichtigkeit des Datenmanagements für die Langlebigkeit und Robustheit von KI-Produkten in Produktion aufzuzeigen und wie hilfreiche Komponenten innerhalb einer KI-Pipeline verknüpft sind.
Gerade unser Data Onboarding – ein Mix aus Profiling, Catalogue, Lineage und Validation, integriert in ein Orchestrations-Framework – ermöglicht uns mit den oben genannten Problemen besser umzugehen und so hochwertigere KI-Produkte bei unseren Kunden zu integrieren.
Zusätzlich hilft dieses Framework dem ganzen Unternehmen, bisher ungenutzte, undokumentierte Datenquellen für verschiedene Use Cases (nicht nur KI) verfügbar zu machen. Dabei ist die enge Zusammenarbeit mit den SMEs auf Kundenseite essenziell, um so effektive und robuste Datenqualitäts-Checks zu implementieren. Die resultierenden Datentöpfe und -prozesse sind somit gut verstanden, sodass Validierungs-Errors vom Kunden verstanden und behoben werden können, was so zu einem langlebigen Einsatz des Service beiträgt.
In einer abgespeckten, kundenspezifischen Data Onboarding Integration haben wir mit Hilfe verschiedener Open und Closed Source Tools eine für den Kunden einfach skalierbare und leicht verständliche Plattform geschaffen.
So haben wir beispielsweise Validationchecks mit Great Expectations (GE), einem Open Source Framework, umgesetzt. Dieses Tool bietet neben Python-basierter Integration diverser Tests auch eine Reporting Oberfläche, die nach jedem Durchlauf einen einfach verständlichen Einstiegspunkt in die Resultate bietet.
Diese Architektur kann dann in verschiedenen Kontexten laufen, ob in der Cloud, mit einem Closed Source Software wie Azure Data Factory oder on premises mit Open Source Tools wie Airflow – und kann um weitere Tools jederzeit ergänzt werden.
4. Data-centric im Status Quo von KI
Sowohl model- als auch data-centric beschreiben Handlungsansätze, wie man an ein KI-Projekt herangehen kann.
Model-centric ist in den letzten Jahren recht erwachsen geworden und es haben sich dadurch einige Best Practices in verschiedenen Bereichen entwickelt, auf denen viele Frameworks aufbauen.
Dies hat auch damit zu tun, dass in der akademischen Welt der Fokus sehr stark auf Modellarchitekturen und deren Weiterentwicklung lag (und noch liegt) und diese stark mit führenden KI-Unternehmen korreliert. Gerade im Bereich Computer Vision und Natural Langue Processing konnten kommerzialisierte Meta-Modelle, trainiert auf gigantischen Datensets, die Tür zu erfolgreichen KI Use Cases öffnen. Diese riesigen Modelle können auf kleineren Datenmengen für Endanwendungen gefinetuned werden, bekannt unter Transfer Learning.
Diese Entwicklung hilft allerdings nur einem Teil der gescheiterten Projekte, da gerade im Kontext von industriellen Projekten fehlende Kompatibilität oder Starrheit der Use Cases die Anwendungen von Meta-Modellen erschwert. Die Nicht-Starrheit findet sich häufig in maschinenlastigen Produktionsindustrien, wo sich das Umfeld, in dem Daten produziert werden, stetig ändert und sogar der Austausch einer einzelnen Maschine große Auswirkungen auf ein produktives KI-Modell haben kann. Wenn diese Problematik nicht richtig im KI-Prozess bedacht wurde, entsteht hier ein schwer kalkulierbares Risiko, auch bekannt unter Technical Debt [Quelle: https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf].
Zu guter Letzt stellen die Distributionen bei einigen Use Cases ein inhärentes Problem für ML dar. Modelle haben grundsätzlich Schwierigkeiten mit edge cases, sehr seltene und ungewöhnliche Beobachtungspunkte (die long tails [Quelle: https://medium.com/codex/machine-learning-the-long-tail-paradox-1cc647d4ba4b] einer Verteilung). Beispielweise ist es nicht ungewöhnlich, dass bei Fault Detection das Verhältnis von fehlerhaften zu einwandfreien Bauteilen eins zu mehreren Tausend beträgt. Die Abstraktionsfähigkeit bei ungesehenen, abseits der Norm liegenden Fehlern ist hier meist schlecht.
5. Schluss – Paradigmenwechsel in Sicht?
Diese Probleme zu bewältigen, ist zwar Teil des Versprechens von data-centric, aber präsentiert sich im Moment noch eher unausgereift.
Das lässt sich auch an der Verfügbarkeit und Maturität von Open Source Frameworks darlegen. Zwar gibt es schon vereinzelte, produktionsfertige Anwendungen, aber keine, die die verschiedenen Teilbereiche von data-centric zu vereinheitlichen versucht. Dies führt unweigerlich zu längeren, aufwendigeren und komplexeren KI-Projekten, was für viele Unternehmen eine erhebliche Hürde darstellt. Außerdem sind kaum Datenmetriken vorhanden, die Unternehmen ein Feedback geben, was sie denn genau gerade „verbessern“. Und zweitens, viele der Tools (bsp. Data Catalogue) haben einen eher indirekten, verteilten Nutzen.
Einige Start-ups, die diese Probleme angehen wollen, sind in den letzten Jahren entstanden. Dadurch, dass diese aber (ausschließlich) paid tier Software vermarkten, ist es eher undurchsichtig, inwiefern diese Produkte wirklich die breite Masse an Problemen von verschiedenen Use Cases abdecken können.
Obwohl die Aufführungen oben zeigen, dass Unternehmen generell noch weit entfernt sind von einer ganzheitlichen Integration von data-centric, wurden robuste Daten Strategien in der letzten Zeit immer wichtiger (wie wir bei statworx an unseren Projekten sehen konnten).
Mit vermehrtem akademischem Research in Daten Produkte wird sich dieser Trend sicherlich noch verstärken. Nicht nur weil dadurch neue, robustere Frameworks entstehen, sondern auch weil durch Uni-Absolvent:innen den Unternehmen mehr Wissen in diesem Gebiet zufließt.
Bild-Quellen:
Model-centric arch: eigene
Data-centric arch: eigene
Data lineage: https://www.researchgate.net/figure/Data-lineage-visualization-example-in-DW-environment-using-Sankey-diagram_fig7_329364764
Historisierung Code/Data: https://ardigen.com/7155/
Data Augmentation: https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-your-model-but-how-aa1913468722
Data & AI pipeline: eigene
Validieren mit GE: https://greatexpectations.io/blog/ge-data-warehouse/
Ob bewusst oder unbewusst, Vorurteile in unserer Gesellschaft erschweren die Verwirklichung einer geschlechtergerechten Welt, die frei von Stereotypen und Diskriminierung ist. Leider schleichen sich diese geschlechtsspezifischen Vorurteile auch in die KI-Technologien ein, die sich in allen Bereichen unseres täglichen Lebens rasant weiterentwickeln und unsere Gesellschaft in nie gekanntem Maße verändern werden. Daher ist die Entwicklung fairer und unvoreingenommener KI-Systeme für eine vielfältige, gerechte und inklusive Zukunft unerlässlich. Es ist nicht nur wichtig, dass wir uns dieses Problems bewusst sind, sondern auch, dass wir jetzt handeln, bevor diese Technologien unsere geschlechtsspezifischen Vorurteile noch mehr verstärken, auch in Bereichen unseres Lebens, in denen wir sie bereits beseitigt haben.
Lösung beginnt mit Verständnis: Um an Lösungen zur Beseitigung geschlechtsspezifischer Vorurteile und aller anderen Formen von Vorurteilen in der KI zu arbeiten, müssen wir zunächst verstehen, was sie sind und woher sie kommen. Daher werde ich im Folgenden zunächst einige Beispiele für geschlechtsspezifische KI-Technologien vorstellen und Euch dann einen strukturierten Überblick über die verschiedenen Gründe für Vorurteile in der KI geben. In einem zweiten Schritt werde ich die notwendigen Maßnahmen für fairere und unvoreingenommenere KI-Systeme vorstellen.
Sexistische KI
Geschlechtsspezifische Vorurteile in der KI haben viele Gesichter und schwerwiegende Auswirkungen auf die Gleichstellung von Frauen. Während Youtube meinem ledigen Freund (männlich, 28) Werbung für die neuesten technischen Erfindungen oder die neuesten Automodelle zeigt, muss ich, ebenfalls ledig und 28, Werbung für Fruchtbarkeits- oder Schwangerschaftstests ertragen. Aber KI wird nicht nur eingesetzt, um Entscheidungen darüber zu treffen, welche Produkte wir kaufen oder welche Serien wir als nächstes sehen wollen. KI-Systeme werden auch eingesetzt, um zu entscheiden, ob Ihr ein Vorstellungsgespräch bekommt oder nicht, wie viel Ihr für Eure Autoversicherung zahlt, wie gut Eure Kreditwürdigkeit ist oder sogar, welche medizinische Behandlung Ihr bekommt. Und hier beginnt die Voreingenommenheit solcher Systeme wirklich gefährlich zu werden.
Im Jahr 2015 lernte das Rekrutierungstool von Amazon beispielsweise fälschlicherweise, dass Männer bessere Programmierer seien als Frauen. Daraufhin bewertete das Tool Bewerber:innen für Softwareentwicklerstellen und andere technische Stellen nicht geschlechtsneutral.
Im Jahr 2019 beantragte ein Paar dieselbe Kreditkarte. Obwohl die Ehefrau eine etwas bessere Kreditwürdigkeit und die gleichen Einnahmen, Ausgaben und Schulden wie ihr Ehemann hatte, setzte das Kreditkartenunternehmen ihr Kreditkartenlimit viel niedriger an, was der Kundendienst des Kreditkartenunternehmens nicht erklären konnte.
Wären diese sexistischen Entscheidungen von Menschen getroffen worden, wären wir empört. Zum Glück gibt es für uns Menschen Gesetze und Vorschriften gegen sexistisches Verhalten. Dennoch steht die künstliche Intelligenz mittlerweile über dem Gesetz, weil eine vermeintlich rationale Maschine die Entscheidung getroffen hat. Wie kann also eine vermeintlich rationale Maschine befangen, voreingenommen und rassistisch werden? Es gibt drei miteinander verknüpfte Gründe für Vorurteile in KI: Daten, Modelle und die AI Gemeinschaft.
Daten sind unser Schicksal
Erstens sind Daten ein Spiegel unserer Gesellschaft, mit all unseren Werten, Annahmen und leider auch Vorurteilen. Es gibt keine neutralen oder unbearbeiteten Daten. Daten werden immer von Menschen erzeugt, gemessen und gesammelt. Daten wurden schon immer durch kulturelle Vorgänge erzeugt und zu kulturellen Kategorien geformt. So werden beispielsweise die meisten demografischen Daten auf der Grundlage vereinfachter, binärer Frau-Mann-Kategorien etikettiert. Wenn die Geschlechterklassifizierung das Geschlecht auf diese Weise zusammenfasst, sind die Daten nicht in der Lage, Geschlechterfluidität und die eigene Geschlechtsidentität aufzuzeigen. Auch „Rasse“ ist ein soziales Konstrukt, ein Klassifizierungssystem, das wir Menschen vor langer Zeit erfunden haben, um physische Unterschiede zwischen Menschen zu definieren, und das immer noch in Daten vorhanden ist.
Der zugrundeliegende mathematische Algorithmus in KI-Systemen ist selbst nicht sexistisch. KI lernt aus Daten mit all ihren möglichen geschlechtsspezifischen Verzerrungen. Nehmen wir zum Beispiel an, ein Gesichtserkennungsmodell hat noch nie eine transsexuelle oder nicht-binäre Person gesehen, weil es kein solches Bild im Datensatz gab. In diesem Fall wird es eine transgender oder nicht-binäre Person nicht korrekt klassifizieren (Selection Bias).
Oder, wie im Fall von Google Translate, wird der Ausdruck „eine Ärztin“ in geschlechtsspezifisch flektierten Sprachen durchweg in die männliche Form übersetzt, weil das KI-System auf Tausenden von Online-Texten trainiert wurde, in denen die männliche Form von „Arzt“ aufgrund historischer und sozialer Umstände stärker verbreitet war (Historical Bias). Laut Invisible Women gibt es bei Big Data im Allgemeinen eine große Kluft zwischen den Geschlechtern, die zu Lasten der Frauen geht. Wenn wir also nicht darauf achten, mit welchen Daten wir diese Algorithmen füttern, werden sie den Gender Gap in den Daten übernehmen und Frauen systematisch diskriminieren.
Modelle brauchen Bildung
Zweitens sind unsere KI-Modelle leider nicht intelligent genug, um die Vorurteile in den Daten zu überwinden. Da die derzeitigen KI-Modelle nur Korrelationen und keine kausalen Strukturen analysieren, lernen sie blind, was in den Daten steht. Diesen Algorithmen wohnt ein systematischer Strukturkonservatismus inne, da sie darauf ausgelegt sind, bestimmte Muster in den Daten zu reproduzieren.
Um dies zu veranschaulichen, werde ich ein fiktives und sehr vereinfachtes Beispiel verwenden: Stellt euch einen sehr stereotypen Datensatz mit vielen Bildern von Frauen in Küchen und Männern in Autos vor. Anhand dieser Bilder soll ein Bildklassifikationsalgorithmus lernen, das Geschlecht einer Person auf einem Bild vorherzusagen. Aufgrund der Datenselektion gibt es in dem Datensatz eine hohe Korrelation zwischen Küchen und Frauen und zwischen Autos und Männern – eine höhere Korrelation als zwischen einigen charakteristischen Geschlechtsmerkmalen und dem jeweiligen Geschlecht. Da das Modell keine kausalen Strukturen erkennen kann (was geschlechtsspezifische Merkmale sind), lernt es also fälschlicherweise, dass eine Küche im Bild auch bedeutet, dass Frauen im Bild sind, und dasselbe gilt für Autos und Männer. Wenn also auf einem Bild eine Frau in einem Auto zu sehen ist, würde die KI die Person als Mann identifizieren und vice versa.
Dies ist jedoch nicht der einzige Grund, warum KI-Systeme die Vorurteile in Daten nicht überwinden können. Es liegt auch daran, dass wir den Systemen nicht „sagen“, dass sie darauf achten sollen. KI-Algorithmen lernen, indem sie ein bestimmtes, von den Entwicklern festgelegtes Ziel optimieren. In der Regel handelt es sich bei dieser Leistungsmessung um eine durchschnittliche Genauigkeitsmetrik, die keinerlei ethische oder faire Beschränkungen enthält. Das ist so, als ob ein Kind lernen soll, so viel Geld wie möglich zu bekommen, ohne zusätzliche Einschränkungen, wie z. B. die Konsequenzen von Diebstahl, Ausbeutung oder Betrug. Wenn wir wollen, dass KI-Systeme lernen, dass geschlechtsspezifische Vorurteile falsch sind, müssen wir dies in ihr Training und ihre Leistungsbewertung einbeziehen.
Der Gemeinschaft fehlt es an Diversität
Schließlich ist es die Entwickler:innen-Community, die direkt oder indirekt, bewusst oder unbewusst ihre eigenen geschlechtsspezifischen und anderen Vorurteile in KI-Technologien einbringt. Sie wählen die Daten aus, definieren das Optimierungsziel und gestalten die Nutzung von KI.
Auch wenn in einigen Fällen möglicherweise böswillige Absichten vorliegen, würde ich behaupten, dass Entwickler:innen ihre eigenen Vorurteile oft unbewusst in KI-Systeme einbringen. Wir alle erliegen unbewussten Vorurteilen, d. h. unbewussten Denkfehlern, die aus Problemen mit dem Gedächtnis, der Aufmerksamkeit und anderen mentalen Fehlern resultieren. Mit anderen Worten: Diese Verzerrungen resultieren aus dem Bestreben, die unglaublich komplexe Welt, in der wir leben, zu vereinfachen.
So fällt es unserem Gehirn beispielsweise leichter, stereotypes Denken anzuwenden, d. h. Vorstellungen über eine Person auf der Grundlage dessen zu entwickeln, wie Menschen aus einer ähnlichen Gruppe „typischerweise“ sein könnten (z. B. ein Mann eignet sich besser für die Position eines Geschäftsführers), als alle Informationen zu sammeln, um eine Person und ihre Eigenschaften vollständig zu verstehen. Oder, gemäß dem Affinitäts-Bias, mögen wir die Menschen am meisten, die so aussehen und denken wie wir, was ebenfalls eine vereinfachte Art ist, die Menschen um uns herum zu verstehen und zu kategorisieren.
Wir alle haben solche unbewussten Vorurteile, und da wir alle unterschiedliche Menschen sind, variieren diese Vorurteile von Person zu Person. Da jedoch die derzeitige Gemeinschaft der KI-Entwickler:innen zu über 80 % aus weißen, Cis-Männern besteht, sind die Werte, Ideen und Vorurteile, die sich in KI-Systeme einschleichen, sehr homogen und damit buchstäblich engstirnig. Angefangen bei der Definition von KI: Die Gründerväter der KI im Jahr 1956 waren allesamt weiße, männliche Ingenieure, eine sehr homogene Gruppe von Menschen, was zu einer engen Vorstellung davon führte, was Intelligenz ist, nämlich die Fähigkeit, Spiele wie Schach zu gewinnen. Aus der Psychologie wissen wir jedoch, dass es viele verschiedene Arten von Intelligenz gibt, z. B. emotionale oder soziale Intelligenz. Wenn heute ein Modell von einer sehr homogenen Gruppe von Menschen ohne besondere Aufmerksamkeit und Verfahren entwickelt und überprüft wird, sind sie aufgrund unbewusster Voreingenommenheit nicht in der Lage, Diskriminierung zu erkennen, die sich von ihnen selbst unterscheidet. In der Tat ist diese homogene Gemeinschaft tendenziell die Gruppe von Menschen, die in der KI kaum unter Voreingenommenheit leidet.
Stellen Sie sich vor, alle Kinder auf der Welt würden von 30-jährigen weißen Cis-Männern aufgezogen und erzogen. So sieht unsere KI heute aus. Sie wird von einer sehr homogenen Gruppe entworfen, entwickelt und bewertet und vermittelt so eine einseitige Perspektive auf Werte, Normen und Ideen. Die Entwickler:innen sind der Kern dieser Entwicklung. Sie bringen der KI bei, was richtig oder falsch, was gut oder schlecht ist.
Die Vorurteile in der Gesellschaft aufbrechen
Ein entscheidender Schritt auf dem Weg zu einer fairen und unvoreingenommenen KI ist also eine vielfältige und integrative KI-Entwicklungsgemeinschaft. Inzwischen gibt es einige technische Lösungen für die genannten Probleme der Daten- und Modellverzerrung (z. B. Datendiversifizierung oder Kausalmodellierung). Doch all diese Lösungen sind nutzlos, wenn die Entwickler:innen nicht von vornherein über Probleme mit Vorurteilen nachdenken. Unterschiedliche Menschen können die blinden Flecken und die Vorurteile der jeweils anderen besser überprüfen. **Viele Studien zeigen, dass die Vielfalt in Informatikteams entscheidend dazu beiträgt, Vorurteile in der KI zu verringern.
Außerdem müssen wir unsere Gesellschaft über KI, ihre Risiken und Chancen aufklären. Wir müssen die Ausbildung von KI-Entwickler:innen überdenken und umstrukturieren, denn sie brauchen ebenso viel ethisches Wissen wie technisches Wissen, um faire und unvoreingenommene KI-Systeme zu entwickeln. Wir müssen die breite Bevölkerung darüber aufklären, dass auch wir alle Teil dieses massiven Wandels durch KI werden können, um unsere Ideen und Werte in die Gestaltung und Entwicklung dieser Systeme einzubringen.
Wenn wir die Vorurteile der KI überwinden wollen, müssen wir letztlich auch die Vorurteile in unserer Gesellschaft überwinden. Vielfalt ist die Lösung für eine faire und unvoreingenommene KI, nicht nur in den KI-Entwicklungsteams, sondern in unserer gesamten Gesellschaft. KI wird von Menschen gemacht, von uns, von unserer Gesellschaft. Unsere Gesellschaft mit ihren Strukturen bringt Vorurteile in die KI: durch die Daten, die wir produzieren, die Ziele, die wir von den Maschinen erwarten, und die Gemeinschaft, die diese Systeme entwickelt. Im Kern sind Vorurteile in der KI kein technisches Problem – sie sind ein soziales Problem.
Positive Verstärkung von KI
Schließlich müssen wir uns fragen, ob wir wollen, dass die KI die heutige Gesellschaft widerspiegelt oder eine gleichberechtigtere Gesellschaft von morgen? Nehmen wir an, wir verwenden Machine Learning Modelle, um die Welt von heute abzubilden. In diesem Fall werden wir keinen sozialen Fortschritt erzielen. Wenn wir nicht handeln, könnten wir einige soziale Fortschritte, wie z. B. mehr Gleichberechtigung zwischen den Geschlechtern, verlieren, da die KI Vorurteile verstärkt und in unser Leben zurückbringt. Die KI soll zukunftsorientiert sein. Aber gleichzeitig basiert sie auf Daten, und Daten spiegeln unsere Geschichte und Gegenwart wider. So wie wir also die Voreingenommenheit in der Gesellschaft überwinden müssen, um die Voreingenommenheit in KI-Systemen zu überwinden, brauchen wir unvoreingenommene KI-Systeme für den sozialen Fortschritt in unserer Welt.
Nach all dem bin ich hoffnungsvoll und optimistisch. Durch diesen Verstärkungseffekt hat die KI das Bewusstsein für alte Fairness- und Diskriminierungsprobleme in unserer Gesellschaft auf einer viel breiteren Ebene geschärft. Vorurteile in KI zeigen uns einige der dringendsten gesellschaftlichen Herausforderungen. Ethische und philosophische Fragen werden immer wichtiger. Und weil KI diesen Verstärkungseffekt auf die Gesellschaft hat, können wir sie auch zum Positiven nutzen. Wir können diese Technologie für das Gute nutzen. Wenn wir alle zusammenarbeiten, haben wir die Chance, die Welt zu einem wesentlich vielfältigeren, inklusiveren und gleichberechtigteren Ort umzugestalten.
Bereits letztes Jahr war das gesamte Schweizer Team von STATWORX zum ersten Mal beim Digital Festival Zürich dabei. Daher haben wir uns schon sehr auf das diesjährige Event gefreut, das vom 23. bis 26. September im Schiffbau in Zürich stattfand, der praktischerweise gleich um die Ecke unseres Schweizer Büros liegt. Unter dem Motto „Make It Personal“ brachte eine Vielzahl von Keynotes, Labs und Networking-Sessions digitale Führungskräfte, Digital-Aficionados und Innovator:innen zusammen, die alle von Neugier, Offenheit und einer Maker-Mentalität angetrieben wurden. Passend zum diesjährigen Motto des Digital Festivals möchte ich Ihnen meine persönlichen fünf Highlights dieses Events nicht vorenthalten.
5 Highlights vom Digital Festival Zürich 2021
1. AI Experience: Lernen. Interagieren. Anwenden
In diesem Jahr nahmen wir nicht nur als Gäste am Digital Festival Zürich teil, sondern hatten auch die Möglichkeit, am Freitagnachmittag eine Lab-Session zu veranstalten. In unserem AI Experience Lab haben wir zunächst eine kurze Einführung gegeben, was sich hinter dem Buzzword künstliche Intelligenz verbirgt, und die Möglichkeit geboten, mit verschiedenen KI-Anwendungen zu interagieren und herumzuspielen. Zum Beispiel mit einem GPT-3-basierten Data Science Chatbot oder der Teachable Machine von Google.
Nach der Präsentation verschiedener Anwendungsfälle der vorgestellten KI-Technologien konnten die Teilnehmenden weitere Anwendungsfälle für ihr jeweiliges Geschäftsfeld ausarbeiten. Da wir recht spontan die Chance bekamen, eine Lab-Session zu veranstalten, freuten wir uns umso mehr, dass sie sofort ausgebucht war. Die Gruppe war sehr heterogen – Geschäftsleute aus verschiedenen Branchen, Forschende und auch einige Studierende – was zu vielen interessanten Gesprächen und Diskussionen führte. Es war eine große Freude zu sehen, wie interessiert und engagiert die Teilnehmenden waren.
In der abschließenden Fragerunde wollten sie vor allem wissen, wie KI in Zukunft aussehen wird und welche Auswirkungen sie auf die Gesellschaft haben wird. Das hat mir wieder einmal gezeigt, wie wichtig es ist, sich nicht nur auf KI in der Wirtschaft zu konzentrieren, sondern auch Themen im Bereich KI und Gesellschaft anzusprechen und voranzutreiben.
2. Blind Spot – Das Spiel für Ihr nächstes Teamevent
Neben unserer eigenen Session habe ich noch an einer weiteren Lab-Session teilgenommen, und die war ein Hit. In diesem Lab hatten wir die Möglichkeit, Blind Spot zu spielen. Blind Spot ist ein kooperatives Brettspiel, das von Sabrina Schenardi und Matthias Koller mit Unterstützung des Spieleentwicklers Robert Stoop im Rahmen einer MBA-Arbeit erforscht und entwickelt wurde.
In Teams waren wir für die Leitung eines fiktiven Unternehmens mit allen üblichen Abteilungen wie Personal, Finanzen oder IT verantwortlich. Mit Schnelligkeit, Strategie und Zusammenarbeit mussten wir verschiedene Herausforderungen bewältigen und Zielkonflikte lösen. Es dauerte einige Zeit, bis sich unser Team an den Gedanken gewöhnt hatte, miteinander und nicht gegeneinander zu spielen. Es war auch sehr interessant zu sehen, dass jede:r von uns eine andere Vorstellung davon hatte, was Gewinnen in diesem Spiel bedeutet: Während einige von uns darauf aus waren, so viel Geld wie möglich auf dem Konto zu haben, wollten andere zum Beispiel um jeden Preis vermeiden, in einen blinden Fleck zu geraten (eine Situation, in der man eine enorme Menge an Aufgaben zu lösen hat). Und dann gab es noch diejenigen, die das Spiel einfach schneller als die anderen Teams beenden wollten.
In der abschließenden Diskussion, nachdem alle Teams das Spiel beendet hatten, stellten wir fest, dass keine:r von uns mehr Recht oder Unrecht hatte als die anderen. Genau wie in der realen Geschäftswelt gibt es viele verschiedene Strategien und Maßnahmen, um ein Unternehmen erfolgreich zu führen.
3. Überall Festival-Atmosphäre
Was mir am Digital Festival Zürich im Vergleich zu anderen Business- und Networking-Konferenzen wirklich gefällt, ist der außergewöhnliche Veranstaltungsort und die lockere Atmosphäre dieser Veranstaltung. Schon beim Einchecken erinnerten mich die Badges und Festivalarmbänder mehr an meinen Besuch des Gurtenfestivals vor ein paar Jahren, als an meinen letzten Besuch einer Business-Konferenz. Nur, dass das Einchecken hier viel schneller ging als bei jedem Musikfestival, das ich je besucht habe. Dieses Festivalgefühl zog sich durch die gesamte Veranstaltung und rechtfertigte den Namen Digital Festival voll und ganz.
Das Foyer war mit verschiedenen Foodtrucks, Erlebnisständen und Sitzecken zum Plaudern gefüllt. Der gesamte Hauptveranstaltungsort war sehr offen und flexibel gestaltet, so dass man problemlos zwischen Keynote-Vorträgen, Networking und Catering wechseln konnte, ohne jemanden zu stören. Generell war der Veranstaltungsort perfekt auf das Thema der Digitalisierung abgestimmt. Der Schiffbau, der ursprünglich für den Bau von Schiffen genutzt wurde, befindet sich im Herzen des Zürcher Tech-Quartiers, direkt neben dem berühmten Technopark. Der industrielle Stil des Gebäudes in Kombination mit der modernen, avantgardistischen Dekoration bot die perfekte Umgebung für Innovationen, Ideen und Diskussionen zu Themen unserer digitalen Zukunft.
4. Was für ein kulinarisches Erlebnis!
Das Tüpfelchen auf dem „i“ dieser Veranstaltung war definitiv das Catering. Nach dem Einchecken wurden wir mit Croissants, frischen Säften und Smoothies und – das Beste für einen Frahlingliebhaber wie mich – mit einem Barista-Truck mit frisch geröstetem Kaffee begrüßt. Zum Mittagessen war die Lobby voller Food Trucks, die alles anboten, was das Herz begehrt: Currys, Pasta, Arbeit, Sushi, Burger und mehr – alles superfrisch und lecker. Und das Beste daran: Da die Portionen eher Tapas-Größe hatten, konnte man alles probieren, ohne Lebensmittel zu verschwenden. Es gab auch viele vegetarische und vegane Optionen, so dass wirklich für jeden etwas dabei war. Mein persönlicher Favorit: die vegetarischen Gnocci mit Sahne, Spinat und Walnüssen. Zum Nachtisch konnten wir uns mit einem süßen Eis aus der Region verwöhnen. Nach den Lab-Sessions am Nachmittag wurde uns ein köstlicher Aperitif mit Köstlichkeiten wie Muscheln, Weißweinrisotto und Cocktail-Frikadellen angeboten. Zusammen mit dem lokalen Bier und Wein war dies der perfekte kulinarische Abschluss dieser Veranstaltung.
5.Keynote: KI für die Entscheidungsfindung?
Mein persönliches Highlight beim Digital Festival war die Keynote von Elliott Ash zum Thema Building a Robot Judge – What Role for Artificial Intelligence in Judicial Decision-Making. Anhand der Idee, einen Roboter-Richter zu bauen, ging Elliott Ash auf die Frage ein, wann KI zur Unterstützung der menschlichen Entscheidungsfindung eingesetzt werden sollte. Um diese Frage zu beantworten, stellte er drei Kategorien von Entscheidungsprozessen und die damit verbundenen Chancen und Risiken des Einsatzes von KI in jedem dieser Prozesse vor. Insgesamt sind die wahrscheinlich größten Risiken bei der Integration von KI in Entscheidungsprozesse Vorurteile und Diskriminierung. Da Vorurteile bei KI ein sehr komplexes Thema ist, gibt es noch keine perfekten Lösungen für dieses Problem. Es gibt jedoch Möglichkeiten, wie KI eingesetzt werden kann, um Vorurteile in Systemen und sogar in Menschen zu erkennen.
Im Zusammenhang mit der Entwicklung fairer Algorithmen warf Eliott Ash eine weitere sehr interessante und wichtige Frage auf: Welchen Bezugspunkt verwenden wir, um die Fairness und Transparenz von KI-Systemen zu messen? Bei all den Diskussionen über KI-Fairness vergessen wir oft, dass wir Menschen selbst sehr voreingenommen und inkonsequent sind. In der Tat sind KI-Systeme nur deshalb voreingenommen, weil sie mit menschlichen Daten trainiert und von uns entwickelt und bewertet werden. Er wies auch darauf hin, dass Vorurteile bei KI oft dann auftritt, wenn ein sensibles Merkmal wie die Hautfarbe als Ersatz für ein anderes fehlendes Merkmal verwendet wird.
Ohne hier ins Detail zu gehen, hat mir dies einmal mehr gezeigt, wie wichtig es ist, den Bereich des kausalen maschinellen Lernens voranzutreiben, um KI-Systeme mit kausalem Denken zu entwickeln, da diese Systeme das Proxy-Problem automatisch lösen würden und insgesamt robuster sind als aktuelle KI-Lösungen.
Abschließend möchte ich Elliott Ash für diese großartige Keynote danken, die alle meine persönlichen Interessen rund um KI – Voreingenommenheit, Ethik, Menschen und Kausalität – vereint und mir viele neue Ideen und Gedanken zu diesen Themen vermittelt hat.
Fazit
Nach unserer Teilnahme am Digital Festival Zürich im letzten Jahr hatten wir hohe Erwartungen an das diesjährige Digital Festival, und wir wurden nicht enttäuscht. Wenn möglich, war die diesjährige Ausgabe sogar noch besser.
Zusätzlich zu meinen fünf oben genannten Highlights habe ich all die interessanten Menschen, die ich getroffen habe – alte Freunde und neue Bekannte – und die anregenden Diskussionen mit ihnen sehr geschätzt. Ich habe mich auch sehr gefreut, dass ich einen ganzen Tag mit meinen Schweizer Teamkollegen verbringen konnte, denn aufgrund der Corona-Pandemie war dies schon lange nicht mehr möglich.
Abschließend möchte ich mich bei allen Organisator:innen des Digital Festivals für die Durchführung dieses Events und bei allen Teilnehmenden für ihre Ideen, Inputs und ihre positive Energie bedanken. Wir freuen uns schon jetzt auf das Digital Festival 2022!
Einleitung
Jeder Data-Science- und KI-Experte wird Ihnen sagen: Reale Data Science und KI-Initiativen bringen verschiedene Herausforderungen mit sich, auf die weder praktische Programmierwettbewerbe noch theoretische Vorlesungen vorbereiten können. Und manchmal – erschreckend oft [1, 2] – führen diese Probleme in der Praxis dazu, dass vielversprechende KI-Projekte oder ganze KI-Initiativen scheitern. Seit geraumer Zeit wird eine rege Diskussion über die eher technischen Fallstricke und mögliche Lösungen geführt. Zu den bekannteren Problemen gehören z. B. isolierte Daten, schlechte Datenqualität, zu unerfahrene oder unterbesetzte DS & KI-Teams, unzureichende Infrastruktur für das Training und die Bereitstellung von Modellen. Ein weiteres Problem ist, dass zu viele Lösungen aufgrund organisatorischer Probleme nie in die Produktion überführt werden.
Erst in letzter Zeit hat sich der Fokus des Diskurses mehr auf strategische Fragen verlagert. Meiner Meinung nach wird diesen Aspekten jedoch immer noch nicht die Aufmerksamkeit zuteil, die sie verdienen.
Deshalb möchte ich in diesem Beitrag meine Meinung zu den wichtigsten (nicht-technischen) Gründen für das Scheitern von DS & KI-Initiativen darlegen. Darüber hinaus werde ich Ihnen verschiedene Ansätze zur Lösung dieser Probleme vorstellen. Ich bin Data & Strategy Consultant bei STATWORX und ich bin sicher, dass dieser Artikel eher subjektiv ist. Er spiegelt meine persönlichen Erfahrungen mit den Problemen und Lösungen wider, auf die ich gestoßen bin.
Problem Nr. 1: Mangelnde Verknüpfung von Projektumfang und tatsächlichem Business-Problem Problem 1
Ein Problem, das viel häufiger auftritt, als man denken würde, ist die Fehlanpassung der entwickelten Data Science und KI-Lösungen an die tatsächlichen Geschäftsbedürfnisse. Das fertige Produkt erfüllt vielleicht genau die Aufgabe, die das DS- und KI-Team lösen wollte, aber die Anwender:innen suchen eventuell nach einer Lösung für eine ähnliche, aber deutlich andere Aufgabe.
Zu wenig Austausch durch indirekte Kommunikationskanäle oder das Fehlen einer gemeinsamen Sprache und eines gemeinsamen Referenzrahmens führt oft zu grundlegenden Missverständnissen. Das Problem ist, dass ironischerweise nur eine extrem detaillierte, effektive Kommunikation solche subtilen Probleme aufdecken kann.
Die Einbeziehung zu weniger oder selektiver Perspektiven kann zu einem bösen Erwachen führen
In anderen Fällen unterscheiden sich einzelne Teilprozesse oder die Arbeitsweisen einzelner Nutzenden sehr stark. Oft sind sie so unterschiedlich, dass eine Lösung, die für einen der Anwender:innen/Prozesse von großem Nutzen ist, für alle anderen kaum Vorteile bringt (die Entwicklung von Lösungsvarianten ist zwar manchmal eine Option, aber bei weitem nicht so kosteneffizient).
Wenn Sie Glück haben, stellen Sie dies bereits zu Beginn eines Projekts bei der Erhebung der Anforderungen fest. Wenn man Pech hat, kommt das böse Erwachen erst beim breiteren Nutzertest oder gar bei der Einführung, wenn sich herausstellt, dass die Nutzer:innen oder Expert:innen, die die bisherige Entwicklung beeinflusst haben, keinen allgemeingültigen Input geliefert haben und das entwickelte Werkzeug daher nicht allgemein einsetzbar ist.
Wie Sie diesem Problem entgegenwirken können:
- Führen Sie ein strukturiertes und gründliches Requirements Engineering durch. Nehmen Sie sich die Zeit, mit so vielen Expert:innen und Nutzer:innen wie möglich zu sprechen, und versuchen Sie, alle impliziten Annahmen so explizit wie möglich zu machen. Obwohl das Requirements Engineering aus dem Wasserfall-Paradigma stammt, kann es leicht für die agile Entwicklung angepasst werden. Die ermittelten Anforderungen dürfen einfach nicht als endgültige Produktmerkmale verstanden werden, sondern als Elemente für Ihr anfängliches Backlog, die ständig (neu) bewertet und (neu) priorisiert werden müssen.
- Definieren Sie unbedingt Erfolgsmessungen. Tun Sie dies vor Projektbeginn, am besten in Form von objektiv quantifizierbaren KPIs und Benchmarks. Dies trägt wesentlich dazu bei, das Geschäftsproblem bzw. den Geschäftswert, der der angestrebten Lösung zugrunde liegt, zu ermitteln.
- Erstellen Sie, wann immer möglich und so schnell wie möglich, Prototypen, Mock-ups oder sogar Storyboards. Präsentieren Sie diese Lösungsentwürfe so vielen Testnutzern wie möglich. Diese Methoden erleichtern das Einholen von offenem und präzisem Nutzerfeedback, das in die weitere Entwicklung einfließt. Achten Sie darauf, dass Sie eine für die Gesamtheit der Nutzer repräsentative Stichprobe einbeziehen.
Problem Nr. 2: Effizienz- und Ressourcenverluste durch nicht strukturierte Data Science- und KI-Maßnahmen Problem 2
Dezentralisierte Data Science- & KI-Teams entwickeln ihre Anwendungsfälle oft mit wenig bis gar keinem Austausch oder Abgleich zwischen den aktuellen Anwendungsfällen und Backlogs der Teams. Dies kann dazu führen, dass verschiedene Teams versehentlich und unbemerkt (Teile) der gleichen (oder sehr ähnlichen) Lösung entwickeln.
In den meisten Fällen wird, wenn eine solche Situation entdeckt wird, eine der redundanten DS & KI-Lösungen eingestellt oder es werden keine zukünftigen Mittel für die weitere Entwicklung oder Wartung bereitgestellt. So oder so, die redundante Entwicklung von Anwendungsfällen führt immer zu einer direkten Verschwendung von Zeit und anderen Ressourcen ohne oder mit nur minimalem Zusatznutzen.
Problematisch ist auch die fehlende Abstimmung des Use Case Portfolios eines Unternehmens auf die allgemeine Geschäfts- oder KI-Strategie. Dies kann hohe Opportunitätskosten verursachen: Anwendungsfälle, die nicht zur allgemeinen KI-Vision beitragen, können unnötigerweise wertvolle Ressourcen blockieren. Außerdem werden potenzielle Synergien zwischen strategisch wichtigeren Anwendungsfällen (Use Cases) möglicherweise nicht voll ausgeschöpft. Und schließlich könnte der Aufbau von Kompetenzen in Bereichen erfolgen, die von geringer oder gar keiner strategischen Bedeutung sind.
Wie Sie diesem Problem entgegenwirken können:
- Kommunikation ist der Schlüssel. Deshalb sollte es immer eine Reihe von Möglichkeiten für die Data-Science-Expert:innen innerhalb eines Unternehmens geben, sich zu vernetzen und ihre Erfahrungen und Best Practices auszutauschen – insbesondere bei dezentralen DS & KI-Teams. Damit dies funktioniert, ist es wichtig, eine Arbeitsatmosphäre der Zusammenarbeit zu schaffen. Der freie Austausch von Erfolgen und Misserfolgen und damit die interne Verbreitung von Kompetenzen kann nur ohne Konkurrenzdenken gelingen.
- Eine weitere Möglichkeit, das Problem zu entschärfen, ist die Einrichtung eines zentralen Ausschusses, der mit der Verwaltung des DS und KI Use Case Portfolios der Organisation betraut ist. Diesem Ausschuss sollten Vertreter:innen aller (dezentralen) Data Science und KI-Abteilungen sowie der Geschäftsleitung angehören. Gemeinsam überwacht der Ausschuss die Abstimmung von Use Cases und der KI-Strategie, um Redundanzen zu vermeiden und Synergien voll auszuschöpfen.
Problem Nr. 3: Unrealistisch hohe Erwartungen an den Erfolg von Data Science und KI Problem 3
Es mag paradox klingen, aber ein zu großer Optimismus in Bezug auf die Möglichkeiten und Fähigkeiten von Data Science und KI kann dem Erfolg abträglich sein. Denn zu optimistische Erwartungen führen oft dazu, dass die Anforderungen unterschätzt werden, wie z. B. die für die Entwicklung benötigte Zeit oder der Umfang und die Qualität der benötigten Datenbasis.
Gleichzeitig sind die Erwartungen in Bezug auf die Modellgenauigkeit oft zu hoch, ohne dass man die Grenzen des Modells und die grundlegenden Mechanismen von Machine Learning kennt. Diese Unerfahrenheit kann dazu führen, dass viele wichtige Tatsachen nicht erkannt werden, einschließlich, aber nicht beschränkt auf die folgenden Punkte: die unvermeidliche Extrapolation historischer Muster auf die Zukunft; die Tatsache, dass externe Paradigmenwechsel oder Schocks die Generalisierbarkeit und Leistung von Modellen gefährden; die Komplexität der Harmonisierung von Vorhersagen mathematisch nicht verwandter Modelle; die geringe Interpretierbarkeit naiver Modelle oder die Dynamik der Modellspezifikationen aufgrund von Umschulungen.
DS & KI sind einfach keine Wunderwaffe, und zu hohe Erwartungen können dazu führen, dass die Begeisterung in tiefe Ablehnung umschlägt. Die anfänglichen Erwartungen werden fast zwangsläufig nicht erfüllt und weichen daher oft einer tiefgreifenden und undifferenzierten Ablehnung von DS & KI. Dies kann in der Folge dazu führen, dass weniger auffällige, aber nützliche Anwendungsfälle keine Unterstützung mehr finden.
Wie Sie diesem Problem entgegenwirken können:
- Versuchen Sie in Ihrer Kommunikation mit Stakeholdern stets realistische Perspektiven zu vermitteln. Achten Sie darauf, eindeutige Botschaften und objektive KPIs zu verwenden, um Erwartungen zu steuern und Bedenken so offen wie möglich anzusprechen.
- Die Weiterbildung der Stakeholder und des Managements in den Grundlagen von Machine Learning und KI versetzt sie in die Lage, realistischere Einschätzungen und damit sinnvollere Entscheidungen zu treffen. Technisch fundiertes Wissen ist oft nicht notwendig. Konzeptuelles Fachwissen auf einem relativ hohen Abstraktionsniveau ist ausreichend (und glücklicherweise viel leichter zu erlangen).
- Schließlich sollte, wann immer möglich, ein PoC vor einem vollwertigen Projekt durchgeführt werden. Dies ermöglicht es, empirische Hinweise auf die Durchführbarkeit des Use Cases zu sammeln und hilft bei der realistischen Einschätzung der erwarteten Leistung, die anhand relevanter (vordefinierter!) KPIs gemessen wird. Wichtig ist es auch, die Ergebnisse solcher Tests ernst zu nehmen. Bei einer negativen Prognose sollte nie einfach davon ausgegangen werden, dass sich mit mehr Zeit und Aufwand alle Probleme des PoC in Luft auflösen werden.
Problem Nr. 4: Ressentiments und grundsätzliche Ablehnung von Data Science und KI Problem 4
Eine unsichtbare, aber nicht zu unterschätzende Hürde liegt in den Köpfen der Menschen. Dies gilt sowohl für die Belegschaft als auch für das Management. Oft werden vielversprechende Data Science und KI-Initiativen aufgrund von tief verwurzelten, aber undifferenzierten Vorbehalten ausgebremst. Das richtige Mindset ist entscheidend.
Obwohl DS und KI in aller Munde sind, fehlt es in vielen Unternehmen noch an echtem Management-Engagement. Häufig werden zwar Lippenbekenntnisse zu DS & KI abgegeben und erhebliche Mittel investiert, aber die Vorbehalte gegenüber KI bleiben bestehen.
Begründet wird dies oft mit den inhärenten Verzerrungen und Unsicherheiten von KI-Modellen und ihrer geringen direkten Interpretierbarkeit. Hinzu kommt manchmal eine generelle Abneigung, Erkenntnisse zu akzeptieren, die nicht mit der eigenen Intuition übereinstimmen. Die Tatsache, dass die menschliche Intuition oft viel stärkeren – und im Gegensatz zu KI-Modellen nicht quantifizierbaren – Verzerrungen unterliegt, wird in der Regel ignoriert.
Data Science & KI-Initiativen brauchen die Akzeptanz und Unterstützung der Belegschaft
Dies führt dazu, dass (Entscheidungs-)Prozesse und Organisationsstrukturen (z.B. Rollen, Verantwortlichkeiten) nicht so angepasst werden, dass DS & KI-Lösungen ihren (vollen) Nutzen entfalten können. Dies wäre aber notwendig, denn Data Science & KI ist nicht einfach eine weitere Softwarelösung, die sich nahtlos in bestehende Strukturen integrieren lässt.
DS & KI ist eine disruptive Technologie, die unweigerlich ganze Branchen und Organisationen umgestalten wird. Unternehmen, die sich diesem Wandel verweigern, werden auf lange Sicht wahrscheinlich genau an diesem Paradigmenwechsel scheitern. Die Ablehnung des Wandels beginnt bei scheinbaren Kleinigkeiten, wie der Umstellung des Projektmanagements von der Wasserfallmethode auf eine agile, iterative Entwicklung. Ungeachtet der allgemein positiven Aufnahme bestimmter Veränderungsmaßnahmen wird manchmal eine völlig irrationale Ablehnung der Reform bestehender (noch) funktionierender Prozesse festgestellt. Dabei wäre genau das notwendig, um – zugegebenermaßen erst nach einer Phase der Neujustierung – langfristig wettbewerbsfähig zu sein.
Während Vision, Strategie und Strukturen von oben nach unten verändert werden müssen, kann das operative Tagesgeschäft nur von unten nach oben, durch die Mitarbeitenden, revolutioniert werden. Das Engagement des Managements und das beste Werkzeug der Welt sind nutzlos, wenn die Endnutzer:innen nicht in der Lage oder willens sind, es anzunehmen. Die allgemeine Unsicherheit über die langfristige KI-Roadmap und die Angst, durch Maschinen ersetzt zu werden, schüren Ängste, die dazu führen, dass DS & KI-Lösungen nicht in den Arbeitsalltag integriert werden. Dies ist natürlich mehr als problematisch, da nur die (richtige) Anwendung von KI-Lösungen einen Mehrwert schafft.
Wie Sie diesem Problem entgegenwirken können:
- Es überrascht nicht, dass ein solides Change Management der beste Ansatz ist, um die KI-feindliche Denkweise zu entschärfen. Dies sollte nicht nur ein nachträglicher Gedanke, sondern ein integraler Bestandteil jeder DS & KI-Initiative und es sollten Verantwortlichkeiten für diese Aufgabe zugewiesen werden. Eine frühzeitige, umfassende, detaillierte und klare Kommunikation ist unerlässlich. Welche Schritte werden voraussichtlich wann und wie genau umgesetzt? Denken Sie daran, dass es schwer ist, einmal verlorenes Vertrauen wiederzugewinnen. Daher sollten alle Unklarheiten in der Planung angesprochen werden. Entscheidend ist es, bei allen Beteiligten ein Grundverständnis für die Sache zu schaffen und die Notwendigkeit der Veränderung zu verdeutlichen (z.B. weil sonst die Wettbewerbsfähigkeit gefährdet ist, Erfolgsgeschichten oder Misserfolge der Konkurrenz). Darüber hinaus ist der Dialog mit den Betroffenen von großer Bedeutung. Feedback sollte frühzeitig eingeholt und nach Möglichkeit umgesetzt werden. Bedenken sollten immer gehört und respektiert werden, auch wenn sie nicht berücksichtigt werden können. Falsche Versprechungen sind jedoch strikt zu vermeiden; stattdessen sollte man versuchen, die Vorteile von DS & KI in den Vordergrund zu stellen.
- Neben der Einsicht in die Notwendigkeit von Veränderungen ist auch die grundsätzliche Fähigkeit zur Veränderung wichtig. Die Angst vor dem Unbekannten oder Unverständlichen ist uns Menschen inhärent. Daher kann Bildung – nur auf dem für die jeweilige Rolle notwendigen Abstraktions- und Tiefenniveau – einen großen Unterschied machen. Entsprechende Schulungsmaßnahmen sind keine einmalige Angelegenheit; der Aufbau von aktuellem Wissen und die Ausbildung im Bereich Data Science & KI müssen langfristig sichergestellt werden. Die allgemeine Datenkompetenz der Belegschaft muss ebenso sichergestellt werden, wie die Auf- oder Umschulung von technischen Expert:innen. Die Mitarbeitenden müssen eine realistische Chance erhalten, neue und attraktivere Beschäftigungsmöglichkeiten zu erhalten, indem sie sich weiterbilden und sich mit DS & KI beschäftigen. Das wahrscheinlichste Ergebnis sollte niemals sein, dass sie durch DS & KI ihren alten Arbeitsplatz (teilweise) verlieren, sondern muss als Chance und nicht als Gefahr wahrgenommen werden; Data Science & KI müssen Perspektiven schaffen und dürfen sie nicht verderben.
- Übernehmen oder adaptieren Sie die Best Practices von DS & KI-Führungskräften in Bezug auf die Definition von Rollen- und Kompetenzprofilen, die Anpassung von Organisationsstrukturen und Wertschöpfungsprozessen. Bewährte Ansätze können als Blaupause für die Reformierung Ihrer Organisation dienen und so sicherstellen, dass Sie auch in Zukunft wettbewerbsfähig bleiben.
Schlussbemerkungen
Wie Sie vielleicht bemerkt haben, bietet dieser Blogbeitrag keine einfachen Lösungen. Das liegt daran, dass die Probleme, um die es hier geht, komplex und mehrdimensional sind. Dieser Artikel hat high-level Ansätze zur Entschärfung der angesprochenen Probleme geliefert, aber es muss betont werden, dass diese Probleme einen ganzheitlichen Lösungsansatz erfordern. Dies erfordert eine klare KI-Vision und eine daraus abgeleitete solide KI-Strategie, nach der die Vielzahl der notwendigen Maßnahmen koordiniert und gesteuert werden kann.
Deshalb muss ich betonen, dass wir das Stadium, in dem experimentelle und unstrukturierte Data Science und KI-Initiativen erfolgreich sein können, längst verlassen haben. DS & KI darf nicht als technisches Thema behandelt werden, das ausschließlich in Fachabteilungen stattfindet. Es ist an der Zeit, KI als strategisches Thema anzugehen. Wie bei der digitalen Revolution werden nur Organisationen, in denen KI das Tagesgeschäft und die allgemeine Geschäftsstrategie vollständig durchdringt und reformiert, langfristig erfolgreich sein. Wie oben beschrieben, birgt dies zweifelsohne viele Fallstricke, stellt aber auch eine unglaubliche Chance dar.
Wenn Sie bereit sind, diese Veränderungen zu integrieren, aber nicht wissen, wo Sie anfangen sollen, helfen wir von STATWORX Ihnen gerne. Besuchen Sie unsere Website und erfahren Sie mehr über unser Angebot im Bereich AI Strategy!
Quellen
[1] https://www.forbes.com/sites/forbestechcouncil/2020/10/14/why-do-most-ai-projects-fail/?sh=2f77da018aa3 [2] https://blogs.gartner.com/andrew_white/2019/01/03/our-top-data-and-analytics-predicts-for-2019/