Tuning Random Forest on Time Series Data

Manuel Tilgner Blog, Data Science

Training random forests on time series is one thing, but tuning them? It’s not like you can just apply cross validation and be done with it. Or can you? This post forms part two our mini-series “Time Series Forecasting with Random Forest”. Find out how you can tune the hyperparameters of the random forest algorithm when dealing with time series data. The answers might surprise you!

checking prediction

Revisited: Forecasting Last Christmas Search Volume

Sebastian Heinz Blog, Data Science

It is June and nearly half of the year is over, marking the middle between Christmas 2018 and 2019. Last year in autumn, I’ve published a blog post about predicting Wham’s „Last Christmas“ search volume using Google Trends data with different types of neural network architectures. Of course, now I want to know how good the predictions were, compared to …

Simulating the bias-variance tradeoff in R

Robin Kraft Blog, Data Science, Statistik

In my last blog post, I have elaborated on the Bagging algorithm and showed its prediction performance via simulation. Here, I want to go into the details on how to simulate the bias and variance of a nonparametric regression fitting method using R. These kinds of questions arise here at STATWORX when developing, for example, new machine learning algorithms or …